2CO Chang

FACTORY AUTOMATION

INVERTER **FR-A800**

Unparalleled Performance. Uncompromising Quality. [Addition of CC-Link IE TSN models]

- Security & safety
- Easy setup & easy to use
- Eco-friendly factories
- System support

GLOBAL IMPACT OF MITSUBISHI ELECTRIC

Through Mitsubishi Electric's vision, "Changes for the Better" are possible for a brighter future.

Changes for the Better

We bring together the best minds to create the best technologies. At Mitsubishi Electric, we understand that technology is the driving force of change in our lives. By bringing greater comfort to daily life, maximizing the efficiency of businesses and keeping things running across society, we integrate technology and innovation to bring changes for the better.

2

Mitsubishi Electric is involved in many areas including the following

Energy and Electric Systems

A wide range of power and electrical products from generators to large-scale displays.

Electronic Devices

A wide portfolio of cutting-edge semiconductor devices for systems and products.

Home Appliance

Dependable consumer products like air conditioners and home entertainment systems.

Information and Communication Systems

Commercial and consumer-centric equipment, products and systems.

Industrial Automation Systems

Maximizing productivity and efficiency with cutting-edge automation technology.

Contents

Features	4
Application Example, PLC Function, FR Configurator2	24
Connection Example	32
Standard Specifications	33
Outline Dimension Drawings	40
Terminal Connection Diagram, Terminal Specification Explanation	52
Operation Panel (FR-DU08(-01)), LCD Operation Panel (FR-LU08(-01))	67
Parameter List	72
Explanations of Parameters	117
Protective Functions	177
Option and Peripheral Devices	181
Low-Voltage Switchgear/Cables	211
Precaution on Selection and Operation	217
Compatible Motors	223
Compatibility	245
Warranty, Inquiry	249

|

Unparalleled Performance. Uncom

What is required of inverters in this constantly changing world?

At Mitsubishi Electric, we have pursued the answer to this question through constant innovation and evolution.

Introducing our extensive range of high-value,

next-generation inverters delivering outstanding drive performance in any environment,

and a wealth of functionality covering startup to maintenance.

We utilized the traditional Mitsubishi Electric philosophy to further perfect our inverters.

APPROACH TO THE LEADING DRIVE PERFORMANCE The enhanced Real sensorless vector control and vector control serve the needs of all machinery types.

SECURITY & SAFETY

Rapid response is obtained when an unexpected trouble occurs

EASY SETUP & EASY TO USE

Fully equipped with a variety of simple functions and equipment to improve work efficiency.

ECO-FRIENDLY FACTORIES Save energy while increasing factory production.

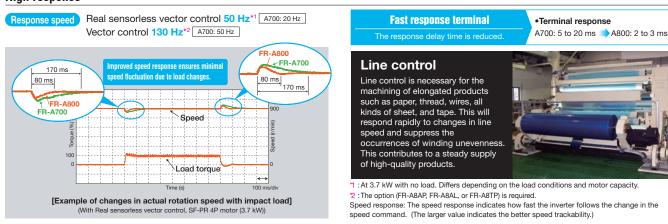
SYSTEM SUPPORT Numerous functions and the extensive lineup of models are ready to support various systems.

promising Quality.

APPROACH TO THE LEADING DRIVE PERFORMANCE

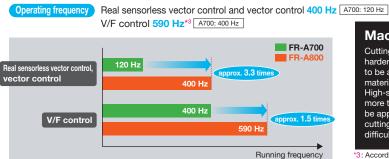
The new series is equipped with the new state-of-the-art high-speed processor developed by Mitsubishi Electric. With better control performance and response level, safe and accurate operation is assured in a diverse range of applications.

The vector control is available when a vector control compatible option is installed.


1 Features

Swift, Smooth, yet Robust

The enhanced Real sensorless vector control and vector control serve the needs of all machinery types.


(1) For high-quality products

High response

(2) Perform ultra-fine processing

High-speed rotation

Machine tool

Cutting-edge machine tools are harder and thinner than ever before to be applicable to diverse new materials.

High-speed rotation is required more than ever before in order to be applicable for fine and precise cutting on hard and difficult-to-grind materials.

3: According to the review result of the export control order about frequency changers, the upper limit of output frequency was determined to be 590 Hz for standard models.

(3) Swiftly move heavy weights

High torque at low speed

Starting torque (When at 0.3 Hz)

Real sensorless vector control 200% (ND rating)*4, Vector control 200% (ND rating)*4 (150% of initial setting for 5.5K and higher)

Vector control 200%. (Select HD rating.)*4

Speed control range

V/F control 1:10 (6 to 60 Hz: Driving) Advanced magnetic flux vector control 1:120 (0.5 to 60 Hz: Driving) Real sensorless vector control 1:200 (0.3 to 60 Hz: Driving) Vector control 1:1500 (1 to 1500 r/min: Both driving/regeneration)

Cranes

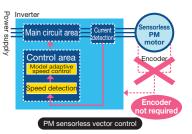
Cranes are in operation daily at ports carrying fully-laden containers in response to strong demand from all over the world. Our new inverter realizes smooth cargo handling work at low speed and high torque for the slow and stable movements required for heavy objects.

*4: Refer to page 17 for the multiple rating setting.

(%) anbuo

(4) For accurate and stable transport between machines

PM sensorless vector control


• What is a permanent magnet (PM) motor?

A PM motor is a synchronous motor with strong permanent magnets embedded in its rotor. The two major PM motor types are: the interior permanent magnet (IPM) motor with its magnets embedded inside the rotor, and the surface permanent magnet (SPM) motor with its permanent magnets attached on the rotor surface.

• What is PM sensorless vector control?

The speed and magnetic pole positions, the two essential bits of information to control a PM motor, are detected without a sensor (encoder). The speed detection internally-performed in an inverter enables highly accurate control of a PM motor, almost as

accurate as an AC servo system, without the need of a sensor (encoder)*5. Combining with Mitsubishi Electric MM-CF series IPM motors facilitates aspects of high-level control with no encoder such as "simple positioning"*6 and "zero speed torque".

- Easy maintenance for sensor (encoder)-less motor
 - •No additional cables means less wiring space required.
 - Improved reliability is obtained in unfavorable operating environments. (e.g. high vibration)
- •PM motors are usually smaller and lighter than induction motors.

Transfer of

precise position.

circuit boards

The Simple positioning control

Transfer of fragile glass substrates can be performed with a highly accurate driving system.

delivers a precision workpiece, such as a printed substrate, to a

Comparison of SF-PRF 1.5 kW 4P and MM-CF152

 5: Speed fluctuation ratio: ±0.05% (digital input)

 Speed fluctuation ratio =

 Speed fluctuation ratio =

 Rated speed

*6: Positional accuracy (with no load) of 1.5K and lower: ±1.8°, 2K and higher: ±3.6°

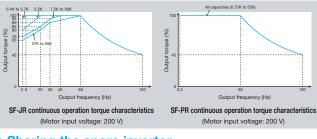
(5) Taking motor performance to the max

Induction motors and magnet motors can be combined freely

The cutting-edge auto tuning function

The PM motor auto tuning function, which has been newly developed, enables sensorless operation of other manufacturers' permanent magnet (PM) motors.

Operation with all Mitsubishi Electric induction motors and PM motors, in addition to induction motors and PM motors from other manufacturers^{*7}, is possible. That means you need less motors for spare and stocks.


(With IPM motors other than MM-CF and PM motors manufactured by other companies, starting torque is limited to 50%, and simple positioning control and zero speed torque cannot be used even if tuned.)

*7: Tuning may not be available depending on its motor characteristics.

• Low speed, high torque realized with SF-PR motor

By combining with Mitsubishi Electric's high-performance, energy-saving motor SF-PR, 100% continuous operation is possible from a low speed of 0.3 Hz for inverters of any capacity. (when using Real sensorless vector control)

Sharing the spare inverter

One spare inverter is enough for the two types of motors (IM and PM).

Induction motor PM motor

SECURITY & SAFETY

Swift recovery ensured by preventing trouble beforehand. The FR-A800 has been developed with reliability and safety foremost in mind.

For Improved Equipment Reliability

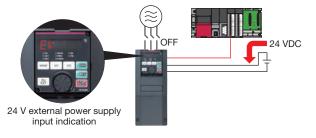
Rapid response is obtained when an unexpected trouble occurs.

(1) Improved system safety

Safety standards compliance **NEW**

Controls with safety functions can be easily performed. The Safe Torque Off (STO) safety function is supported by the inverter. The inverter with the safety function can comply with the safety standards without incurring much expenses.

- •PLe and SIL3 are supported as standard.
- •ISO13849-1:2015 Category 3/PLe
- •IEC62061:2015 / IEC61800-5-2:2016 / IEC61508:2010 SIL3



*1: Safety communication is available between a safety programmable controller and a remote I/O module *2: One MC is required to shut off the power at an activation of the protective function.

(2) Reliable and secure maintenance

Standard 24 VDC power supply for the control circuit **NEW**

In addition to the existing power supply input terminals (R1 and S1) of the control circuit, 24 VDC input is equipped as standard. The 24 VDC power supplied from outside can be fed to the control circuit locally, enabling the parameter settings, communication operation and safety maintenance without turning ON the main power.

Prevention of trouble with temperature monitoring **NEW**

The inverter is equipped with an internal temperature sensor, which outputs a signal when the ambient temperature is high.

This facilitates the detection of rises in temperature inside the inverter following cooling fan malfunction, or rises in ambient temperature due to inverter operating conditions.

(3) Long life components and life check function

Long life components

- •The service life of the cooling fans is now 10 years*³. The service life can be further extended by ON/OFF control of the cooling fan.
- •Capacitors with a design life of 10 years*3*4 are adapted. With these capacitors, the service of the inverter is further extended.
- •Estimated service lifespan of the long-life parts

Components	Estimated lifespan of the FR-A800*8	Guideline of JEMA ***
Cooling fan	10 years	2 to 3 years
Main circuit smoothing capacitor	10 years*4	5 years
Printed board smoothing capacitor	10 years*4	5 years

*3: Surrounding air temperature: Annual average of 40°C (free from corrosive gas, flammable gas, oil mist, dust and dirt). The design life is a calculated value from the LD rating and is not a guaranteed product life.

The design life is a calculated value from the LD rating and is not a guaranteed product life. 4: Output current: 80% of the inverter LD rating *5: Excerpts from "Periodic check of the transistorized inverter" of JEMA (Japan Electrical

"5: Excerpts from "Periodic check of the transistorized inverter" of JEMA (Japan Electrical Manufacturer's Association).

Enhanced life diagnosis function

 An internal thermal sensor is equipped to all inverters as standard, which enables monitoring of the installation environment.

Use this function as a guide for the life diagnosis.

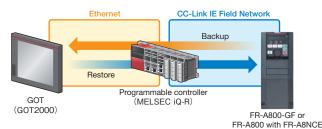
 Maintenance timers are available for up to three peripheral devices, such as motor and bearing.

"Maintenance 1 output" warning

(4) Quick reaction to troubles

Easy fault diagnosis **NEW**

• The operating status (output frequency, etc.) immediately before the protection function activates can be stored in the inverter built-in RAM with the trace function. The stored data (trace data) can be copied to a USB memory device or directly imported to a computer, facilitating trouble analysis using the inverter setup software (FR Configurator2).


Trace data stored in the built-in RAM is deleted when the power is turned OFF or the inverter is reset.

- ·Clock setting is now available in addition to the
- already-available cumulative energization time. The time and date at a protective function activation are easily identified. (The clock is reset at power-OFF.) The date and time are also saved with the trace data, making the fault analysis easier. By using the real-time clock function with the optional liquid crystal display (LCD) operation panel (FR-LU08) (when using battery), the time is not reset even when the power supply is turned OFF.

Backup/restore **NEW**

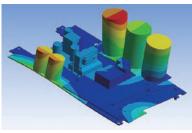
•The GOT can be used for backing up inverter's parameter settings and the data used in the PLC function of inverter, and the backup stored in the GOT can be used to restore the data in the inverter.

(5) Renewal assurance

Intercompatibility with existing models

•The inverter installation method is the same as that for the FR-A700 series, eliminating any concerns over replacement. Furthermore, FR-A700 series control circuit terminal blocks can be installed

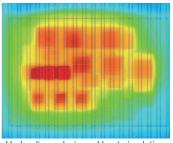
with the use of an option (FR-A8TAT).


- The terminal response adjustment function allows a user to adjust the response speed in accordance with the existing facility. NEW
- •The conversion function of Inverter Setup Software (FR Configurator2) enables parameter copy from an FR-A700 and even from an FR-A500 (to be supported soon).
- For the compatibilities and differences with the FR-A700 series, refer to page 245.

(6) Reasons for high quality

Design considering the hazardous environment

3D-vibration analysis is performed to confirm the vibration resistance. The analysis is also useful to find the best layout position and to further improve the product's rigidity.


Assuming a hazardous service condition, the product reliability is thoroughly assessed in the design stage. Every effort is made to ensure the best quality of the Mitsubishi Electric inverter.*⁶

3D-vibration analysis

Heat control for high quality

Resistance against heat is what makes an inverter reliable. A well-designed heat-resistant power module is essential in a reliable inverter. From the power module's design stage, its heat resistance is carefully considered.*⁶

Hydraulic analysis and heat simulation

EASY SETUP & EASY TO USE

A range of equipment and functions are prepared allowing work to be performed anywhere to suit product life cycles.

From Startup to Maintenance

Fully equipped with a variety of simple functions and equipment to improve work efficiency.

(1) Streamlining the startup process

Parameter copying with USB memory **NEW**

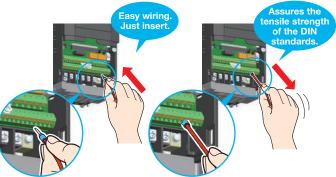
•A USB host connecter (A type), which allows external device connections, has been added.

Parameters can be copied to commercial USB memory devices. (Refer to page 69)

USB 2.0 (full speed) supported

Easy setup with the Inverter Setup Software (FR Configurator2)

- It is a software which is easy to use and has unity as Mitsubishi Electric FA products with MELSOFT common design and good operability.
- •Easy plug-and-play connection to USB terminal equipped as



•Free trial version, which contains start-up functions, is available. It can be downloaded at Mitsubishi Electric FA Global Website.

For FR Configurator2, please refer to page 30.

Easy wiring to the control circuit **NEW**

Spring clamp terminals have been adopted for control circuit terminals. Wires can be protected against loosening under vibrations during transportation of the inverter. Ten additional terminals are used as compared to the FR-A700 series. Round crimping terminals can also be used by employing a control terminal option (FR-A8TR).

(2) Easy-to-follow display improves the operability Easy operation with GOT NEW

- •Automatic communication is possible without specifying any parameter settings simply by connecting to the GOT2000 series.
- •The PLC function device monitor can be displayed at the GOT2000 series. Batch control of multiple inverter device monitors is possible with a single GOT unit.

•The sample screen data for the A800 can be found in the screen design software of the GOT2000 series. The newest version of the screen design software can be downloaded from the Mitsubishi Electric FA Global Website.

Easy-to-follow parameter configuration **NEW**

One of the selectable mode by the operation panel is the Group parameter mode, which provides intuitive and simple parameter settings. (The conventional parameter setting mode is selected by default.)

		Major division	Name
Conventional	Pr. 8 1 8	E	Environment
parameter (A700)		F	Acceleration/deceleration
P		D	Start and frequency commands
		Н	Protective function
	· · · · · · · · · · · · · · · · · · ·	Μ	Monitor
New parameter		Т	Multi function I/O terminal
(A800)	Pr. C + 1 + 1 2	С	Motor constant
(1000)		A	Applications
	Major Minor division division	В	Applications (position control)
		N	Communication
	Group number Parameter number	G	Control

Easy-to-read operation panel **NEW**

A 5-digit, 12-segment display has been adopted for the operation panel (FR-DU08) for a more natural character display. Furthermore, an optional LCD operation panel (FR-LU08) adopting an LCD panel capable of displaying text and menus is also available.

FR-DU08 (12-segment type) FR-LU08 (LCD type) (option)

(3) To aid with maintenance

Reduced wiring check time

Split-type covers are adapted for all capacity models. Maintenance is now easy because all an operator has to do is to remove the cover for the target wiring area.

Maintenance and control of multiple inverters (Option)

Serial number reading is possible using the optional LCD operation panel (FR-LU08) or the Inverter Setup Software (FR Configurator2). Administration of different inverters has become much more simple.

ECO-FRIENDLY FACTORIES

The power consumption by motors is said to amount about the half of all power consumption made by the Japanese manufacturing industry. Factories can save more energy without dropping their production. Less energy and more production—the FR-A800 series will help you to get the both.

The Next Step — Go Green

Save energy while increasing factory production.

(1) Energy-saving function tailored to system, application

Variety of functions

- Check the energy saving effect at a glance
 You can check the energy saving effect on the energy saving monitor.
 - •The measured output power amount can be output in pulses.
- Reduce power consumption during standby
 Control circuits other than those for power-related parts can be operated with 24 VDC power supplied from an external power source. NEW

Since the control circuit can use the external 24 VDC, other power control circuits can stay OFF while no driving is required, and that saves the standby energy.

 By turning the cooling fan ON/OFF based on the inverter status, wasteful power consumption during stoppages can be reduced.

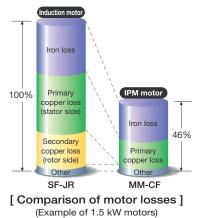
- Save energy with Optimum excitation control **NEW**
- The excitation current is constantly adjusted to drive the motor in the most efficient method which leads to energy saving. For example, with optimum excitation control with motor load torque of 10% when using the SF-JR, motor efficiency has increased by approximately 15% over the previous V/F control method.
- Effective use of regenerative energy (option)

Multiple inverters can be connected to the power regeneration common converter (FR-CV)/high power factor converter (FR-HC2) via a common PN bus.

Regenerative power is used at other inverters, and surplus energy is returned to the power supply, resulting in energy saving. The 315K or higher models are inverter-converter separated types, which are suitable for power regeneration. **NEW**

(≊) HACL

(2) PM motor contributes to the energy saving in factories


PM motor

If the inverter is being used for an application requiring constant-torque, such as a conveyor, factory energy savings can be achieved by replacing your current induction motors with permanent magnet motors (PM motors).

(Tuning is required for an IPM motor other than MM-CF, and for the PM motors of other manufacturers.)

• Why is a PM motor so efficient?

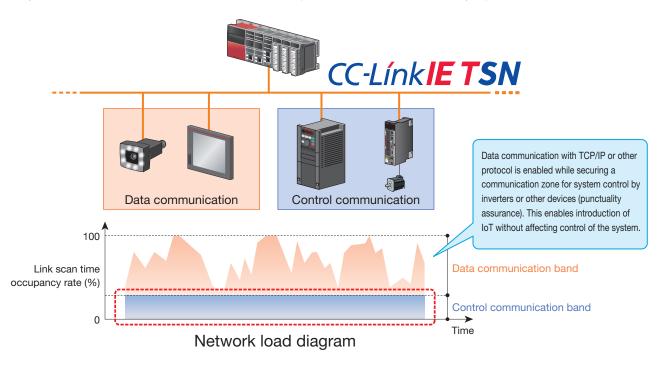
- •The current does not flow to the rotor (secondary side), so there is no secondary copper loss.
- •Magnetic flux is generated by permanent magnets, so less current is required to drive a motor.

Conveyor

A conveyor transports different goods and products according to its application. A PM motor can keep the carrying speed constant while saving energy.

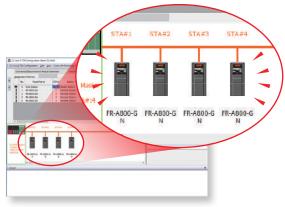
SYSTEM SUPPORT (NETWORK)

Further Visualization of Information -


A seamless data interface is offered.

(1) Ethernet communication function integrated

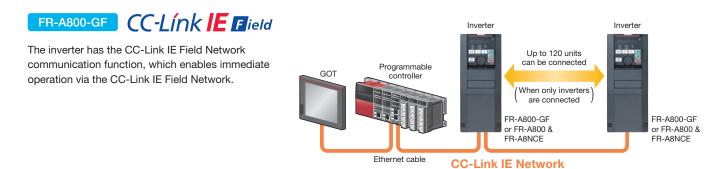
Inverter with communication function **NEW**


FR-A800-GN CC-Línk

With the CC-Link IE TSN (Time Sensitive Networking) communication function, data can be transmitted to IT systems while performing real-time cyclic communication control. This will contribute to startup time reduction and maintainability improvement.

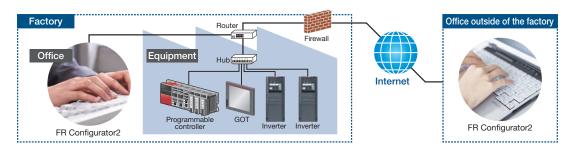
Startup time reduction

Station numbers are easily set with rotary switches. Automatic detection of the network configuration by the engineering software (GX Works3) reduces the startup time. Problems at startup such as line faults can be discovered at a glance with the diagnostic function.


Example of GX Works3 screen

Improved maintainability

Time synchronization allows for real-time monitoring.


This enables trouble analysis to be performed right after an error has occurred.

FR Configurator2 can be connected via Ethernet, which makes maintenance work easier.

FR-A800-E CC-Línk IE Elield Basic

The CC-Link IE Field Network Basic is supported, so the network can be created easily. The inverter's status can be monitored and the parameters can be set via Internet. (MODBUS/TCP is also supported.)

CC-Link family compatible with the FR-A800 series inverters

Item		CC-Línk IE TSN	CC-Línk	CC-Línk IE Bield Basic	CC-Link	
Compatible inverter		FR-A800-GN, FR-A800 & FR-A8NCG	FR-A800-GF, FR-A800 & FR-A8NCE	FR-A800-E	FR-A800 & FR-A8NC	
Communication	n speed	1 Gbps	1 Gbps	100 Mbps	10 Mbps	
Cable		Ethernet category 5e or higher	Ethernet category 5e or higher	Ethernet category 5 or higher	Dedicated cable	
Number of connectable inverters		121 (sum of master and slave stations)	64	64 (open specification)*1	42 (maximum)	
Cyclic communication		Compatible	Compatible	Compatible	Compatible	
	RX	64	64	64	64	
Manual and Parla *2	RY	64	64	64	64	
Number of links*2	RWr	128 (256 bytes)	128 (256 bytes)	32 (64 bytes)	32 (64 bytes)	
	RWw	128 (256 bytes)	128 (256 bytes)	32 (64 bytes)	32 (64 bytes)	
Combination with	TCP/IP	Supported	Not supported	Supported	Not supported	
Topology		Line, star, ring*3,	Line, star, ring,	Star	Bus	
Topology		line-star	line-star	Star	Bus	

*1: The actual number of connectable inverters differs according to the setting of the master.

*2: The numbers of inverter's remote I/O devices and the addresses of inverter's remote registers are common between CC-Link and CC-Link IE Field Network Basic.

*3: Ring topology will be supported later.

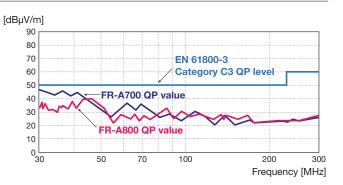
(2) Other network communication

Communication option

- •CC-Link, SSCNET III (/H), DeviceNet[™], PROFIBUS-DPV0 are supported using a compatible communication option. Other Ethernet-based communication such as the CC-Link IE Field Network communication and the FL remote communication can be also supported.
- •A function block (FB) programming for CC-Link communication is available for the MELSEC-Q/L series to create the inverter control sequence programs easily. (The FB library (collection of FB elements) can be downloaded from the Mitsubishi Electric FA Global Website.)
- •The standard model with an RS-485 interface (Mitsubishi inverter protocol, MODBUS® RTU protocol) enables communication with other devices without using a communication option.

SYSTEM SUPPORT (ENVIRONMENT ADAPTABILITY)

Installation Anywhere -


Compliant with a variety of standards, our extensive range of the FR-A800 series inverter covers various applications.

(1) Comprehensive noise countermeasures

Compliance with EU EMC Directive with inverter alone

- Troublesome acquisition of standards is unnecessary.
- •The FR-A800 series is equipped with an EMC filter as standard for compliance with EMC Directive with the inverter alone. (EN 61800-3 2nd Environment Category C3)
- •The newly developed drive technology and the power supply technology minimize the EMI emitted from inverters.

	Capacitive filter (radio noise filter)	Input-side common mode choke (line noise filter)	DC reactor
55K or lower	Standard (built-in)	Standard (built-in)	Option (sold separately)
75K or higher	Standard (built-in)	Option (sold separately)	Option (sold separately)

(2) Global compatibility

Compliance with a variety of standards

- •Complies with UL, cUL, and EC Directives (CE marking), and the Radio Waves Act (South Korea) (KC marking). It is also certified as compliant with the Eurasian Conformity (EAC).
- •The inverters are compliant with the EU RoHS Directive (Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), friendly to people and to the environment.
- •For the 400 V class*1, compliance with various countries ship classifications allows use on ship equipment. (A noise filter is required for the FR-A840 inverter and the FR-CC2 converter unit, and a ferrite core is required for the FR-A846 inverter. (Refer to page 210.))

Certification body								
NK (Nippon Kaiji Kyokai)								
ABS	(American Bureau of Shipping)							
BV	(Bureau Veritas)							
LR	(Lloyd's Register of Shipping)							
DNV GL	(DNV GL AS)							
CCS	(China Classification Society)							
KR	(Korean Register of Shipping)							

*1: The IP55 compatible model with a built-in C3 filter is not compliant with the ship classification standards.

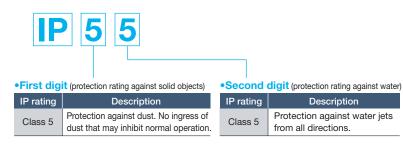
For details of the models compliant with global standards, contact your local sales office.

(3) Protected in hazardous environment

Circuit board coating

The inverters with PCB coating (IEC60721-3-3 3C2/3S2) and conductive plating are available for improved environmental resistance. ("-60" or "-06" is affixed to the end of the inverter model name.)

(4) Wire saving, space saving


Built-in brake transistor **NEW**

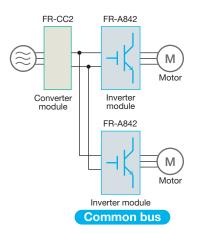
In addition to the 22K and lower, 400 V class 30 to 55K models have also been equipped with a built-in brake transistor. In an application where the motor is hardly decelerated, connecting a brake resistor can shorten the deceleration time; no brake unit or power regeneration converter is required. Wiring, space, and ultimately the cost will be all saved.

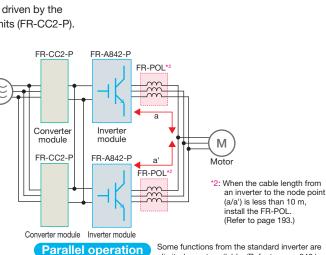
(5) Direct installation by the machine

IP55 compatible NEW

- Inverters can be installed nearby the machine, minimizing cable length between the inverter and motor.
- Support is available for use even in high-humidity or dusty environments, facilitating a more flexible choice of installation locations.
- •By enclosing a DC reactor, it requires less wiring and less space.
- •Compatible with cable glands to meet the IP55 specification at the wiring section.

(6) Flexible configuration to meet the needs


Separate inverter and converter modules **NEW**


The inverter module and the converter module are physically separated for the 315K or higher capacity models.

Inverter module : FR-A842

Converter module : FR-CC2

This facilitates flexible support for a variety of systems such as common bus line (to be supported soon) and parallel operation. The fuse in the FR-A842 inverter eliminates the need of a fuse between terminals P/+ and N/-. These features allow the installation space to be minimized and costs to be reduced. The converter unit can be run with 12-phase rectifier power supply. Motors up to 1350 kW (LD rating) can be driven by the inverters with parallel operation function (FR-A842-P) and the converter units (FR-CC2-P).

Converter module

m

777

Separate

Inverter module

Μ

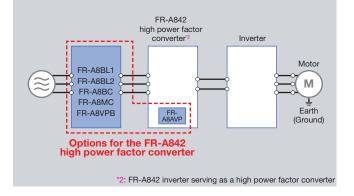
limited or not available. (Refer to page 248.)

SYSTEM SUPPORT (FUNCTION)

High Equipment Functionality

Numerous functions and the extensive lineup of models are ready to support various systems.

(1) Turn spare inverters into converters

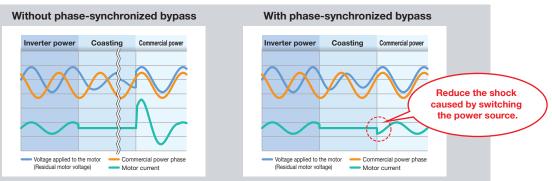

Changeover between inverter and high power factor converter **NEW**

Install the FR-A8AVP (option) in a separated converter type inverter to use it as a high power factor converter. To use the converter, the following options are needed: phase detection transformer box, dedicated filter reactor, dedicated reactor for PWM control, dedicated filter capacitor, inrush current limit resistor, etc.

They can be switched to a converter and back to an inverter again to match process requirements.

The converter is classified as the self-excitation three-phase bridge circuit, and achieves K5 (the conversion factor) = 0. The total harmonic distortion of the input current (THDi) is 5% or less^{'1}, which facilitates compliance with the overseas standards related to harmonic suppression.

*1: When the input voltage is distorted, harmonic contents increase because power harmonics flow into the converter.


(2) Reduce the shock caused by switching the power source

Phase-synchronized bypass switching (400 V class only)

The FR-A8AVP (option) and the FR-A8VPB (option) make it possible to detect the phase of the commercial power supply. (For wiring details, refer to page 186.)

By synchronizing the inverter output with the phase of the commercial power supply, the spike in the motor current can be suppressed and shock reduced.

Furthermore, the time required for the switching is reduced, which is more beneficial for larger inverters.

(3) Reduced tact time with functionality suited to the application

Anti-sway control NEW

When an object is moved by a crane, swinging at the time of stopping is suppressed on the crane's transverse axis or traveling axis. This control cuts down the tact time and facilitates efficient operation.

Increased magnetic excitation deceleration **NEW**

Deceleration time can be reduced without a brake resistor. Tact time can be eliminated at conveyor lines, etc.

(4) Selection of optimum capacity to suit the application

Multiple rating **NEW**

Motor 15 kW

Rated current and four different overload capacity ratings (SLD rating (super light duty), LD rating (light duty), ND rating (normal duty), HD rating (heavy duty)) can be selected with parameters. The optimum inverter can be selected to suit the application, and by selecting an inverter with SLD or LD rating, equipment size can be reduced when compared with the FR-A700 series. The HD rating is best suited for applications requiring low speed and high torque.

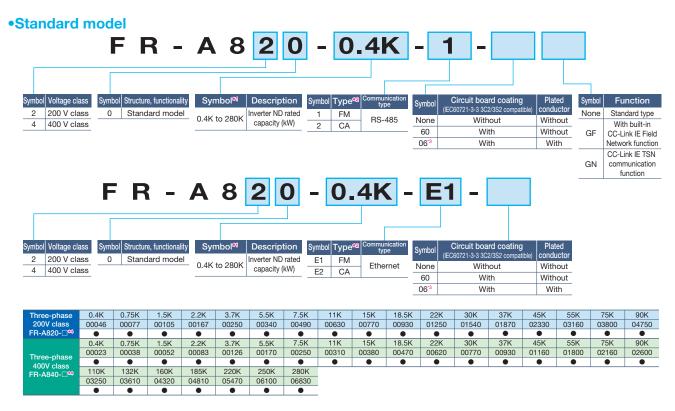
If using an inverter with capacity of 75K or higher, or motor with capacity of 75 kW or higher, always select and install the inverter based on the capacity of the motor with DC reactor.

/ith FR-A700	With FR-A800	Rating	SLD	LD	ND	HD
<u>م</u>	(A A)	naung	Super light duty	Light duty	Normal duty	Heavy duty
	Space			Fan and Pump		
		Application		Tunnel Borin Winding and Unwindi	g Machines, ng, Printing Machines	
		Application			Cranes	Press
huverter	Inverter				Conveyor	
15K	11K					
(LD ra	ting example)	Pr.570 (E301) setting	0	1	2 (Initial value)	3
File		Overload current rating (inverse-time characteristics)	110% 60 s, 120% 3 s	120% 60 s, 150% 3 s	150% 60 s, 200% 3 s	200% 60 s, 250% 3 s
A REAL PROPERTY AND A REAL		Surrounding air temperature	40°C	50°C	50°C	50°C

Motor 15 kW

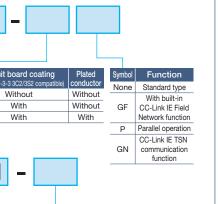
Refer to page 16 for the inverter rating selection.

(5) PLC control with an inverter


Built-in PLC function in an inverter **NEW**

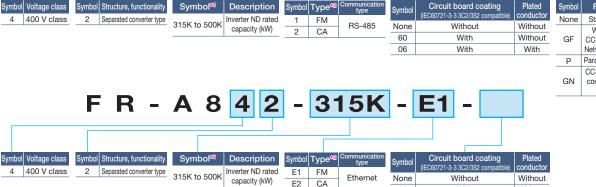
- •Parameters and setting frequency can be changed at the program.
- Inverter control such as inverter operations triggered by input signals, signal output based on inverter operation status, and monitor output can be freely customized based on the machine specifications.
- •All machines can be controlled by the inverter alone, and control can also be dispersed.
- •Time-based operation is possible by using in combination with the real-time clock function (optional LCD operation panel (FR-LU08)).
- •The FR-A800-E enables communication between multiple inverters using the I/O devices and special registers of the PLC function, which can create a small-scale system by Ethernet using the inverter-to-inverter link function.

Conveyor FR Configurator2


Refer to page 28 for the details.

Extensive lineup For the details of the lineup, please contact your sales representative.

IP55 com	patib											_	_				
		F	R	- /	8 4	3 4	6	- [7.5	5K	-	1	- [60	C	3	
Symbol Voltage of 4 400 V c			1bol ^{≋1} :o 132K		scription rated capaci		Symbol Typ 1 FN	1	unication ype -485	Symbol	Circuit b	oard coat	ing	Plated	Symbol	EMC filte	ər
	Sym 6		ture, functi compatible	· ·		-	2 CA E1 FN	A 1 Eth	ernet	60		With		conductor Without	C2	Built-in C2 fi Built-in C3 fi	
			inpatible			-	E2 CA	4		06		With		With			
Three-phase	0.4K	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K	11K	15K	18.5K	22K	30K	37K		55K	75K	90K
400V class	00023	00038	00052	00083	00126	00170	00250	00310	00380	00470	00620	00770	0093	0 01160	01800	02160	02600
FR-A846-□ (with a built-in	110K	132K	-		•	•		•	•		•	•			-	-	•
DC reactor)	03250	03610															


1 Features

Without

Without

With

Ethernet

CA

None

60

06

Without

With

With

315K

			- 315K	to 500K	capacity (k)	W) E2
hree-phase 400V class	315K	355K	400K	450K	500K	
FR-A842-□	07700	08660	09620	10940	12120	
*5	•	•	•	•	•	

F R - A 8 4 2

•Separated converter type

F

[Inverter]

4 400 V class

4 400 V class

	Symbol	Voltag	Voltage class		Symbol		Symbol Description		Symbol		Description Symbol Circl		Circuit board coating	Plated	Symbol	Function
	Н	400 V	class	315K to 630K		Applicable motor capacity (kW)		Applicable motor capacity (kW)			I CIrcuit board coating (IEC60721-3-3 3C2/3S2 compatible)		None	Standard type		
									60	With	Without	Р	Parallel operation			
Three-phase 400V class	04514	0551/	1001/	45014	5001/	5001/	0001/		06	With	With					
(with a built-in DC reactor)	315K	355K	400K	450K	500K	560K	630K									
FR-CC2-H□	•	٠	•		•	•	•									
FR-CC2-H□-P	-	-	•	•	•	•	-									

*1: Models can be alternatively indicated with the inverter rated current (SLD rating).

(For the FR-A842-P and the FR-A846, the current rating is LD or ND. However, the rated current used to represent the model is the SLD rated current of the standard model.) *2: Specification differs by the type as follows.

Monitor output	l		Initial setting			
	Built-in EMC filter	Control logic	Rated frequency	Pr.19 Base frequency voltage		
Terminal FM (pulse train output)	OFF Sink logic		60 Hz	9999		
Terminal AM (analog voltage output (0 to ±10 VDC))	011	Sink logic	00112	(same as the power supply voltage)		
Terminal CA (analog current output (0 to 20 mADC))	ON Source logic 50 Hz		8888			
Terminal AM (analog voltage output (0 to ±10 VDC))	ON	Source logic	50112	(95% of the power supply voltage)		
	Terminal FM (pulse train output) Terminal AM (analog voltage output (0 to ± 10 VDC)) Terminal CA (analog current output (0 to 20 mADC))	Built-in EMC filter	Built-in EMC filter Control logic Terminal FM (pulse train output) OFF Sink logic Terminal AM (analog voltage output (0 to ±10 VDC)) OFF Sink logic Terminal CA (analog current output (0 to 20 mADC)) ON Source logic	Monitor output Built-in EMC filter Control logic Rated frequency Terminal FM (pulse train output) OFF Sink logic 60 Hz Terminal AM (analog voltage output (0 to ±10 VDC)) OFF Sink logic 50 Hz Terminal CA (analog current output (0 to 20 mADC)) ON Source logic 50 Hz		

*3: Available for the 5.5K or higher.

*4: For using the 75K or higher inverter and a 75 kW or higher motor, always install a DC reactor (FR-HEL), which is available as an option.

*5: Always install the converter unit (FR-CC2(-P)). (Not required when a high power factor converter (FR-HC2) is used.)

•: Released model

Inverter by rating

•200 V class

lavada	u maadal	SLD (Supe	r light duty)	LD (Lig	ht duty)	ND (Normal du	ity initial value)	HD (Heavy duty)		
Inverter model FR-A820-□		Motor capacity (kW) ⁹	Rated current (A)	Motor capacity (kW) [¶]	Rated current (A)	Motor capacity (kW) ^۹	Rated current (A)	Motor capacity (kW) ^ឡ	Rated current (A)	
0.4K	00046	0.75	4.6	0.75	4.2	0.4	3	0.2	1.5	
0.75K	00077	1.5	7.7	1.5	7	0.75	5	0.4	3	
1.5K	00105	2.2	10.5	2.2	9.6	1.5	8	0.75	5	
2.2K	00167	3.7	16.7	3.7	15.2	2.2	11	1.5	8	
3.7K	00250	5.5	25	5.5	23	3.7	17.5	2.2	11	
5.5K	00340	7.5	34	7.5	31	5.5	24	3.7	17.5	
7.5K	00490	11	49	11	45	7.5	33	5.5	24	
11K	00630	15	63	15	58	11	46	7.5	33	
15K	00770	18.5	77	18.5	70.5	15	61	11	46	
18.5K	00930	22	93	22	85	18.5	76	15	61	
22K	01250	30	125	30	114	22	90	18.5	76	
30K	01540	37	154	37	140	30	115	22	90	
37K	01870	45	187	45	170	37	145	30	115	
45K	02330	55	233	55	212	45	175	37	145	
55K	03160	75	316	75	288	55	215	45	175	
75K	03800	90/110	380	90	346	75	288	55	215	
90K	04750	132	475	110	432	90	346	75	288	

•400 V class

Inverter model		SLD (Supe	r light duty)	LD (Light duty)		ND (Normal duty initial value)		HD (Heavy duty)	
FR-A8		Motor capacity (kW) [¶]	Rated current (A)						
0.4K	00023	0.75	2.3	0.75	2.1	0.4	1.5	0.2	0.8
0.75K	00038	1.5	3.8	1.5	3.5	0.75	2.5	0.4	1.5
1.5K	00052	2.2	5.2	2.2	4.8	1.5	4	0.75	2.5
2.2K	00083	3.7	8.3	3.7	7.6	2.2	6	1.5	4
3.7K	00126	5.5	12.6	5.5	11.5	3.7	9	2.2	6
5.5K	00170	7.5	17	7.5	16	5.5	12	3.7	9
7.5K	00250	11	25	11	23	7.5	17	5.5	12
11K	00310	15	31	15	29	11	23	7.5	17
15K	00380	18.5	38	18.5	35	15	31	11	23
18.5K	00470	22	47	22	43	18.5	38	15	31
22K	00620	30	62	30	57	22	44	18.5	38
30K	00770	37	77	37	70	30	57	22	44
37K	00930	45	93	45	85	37	71	30	57
45K	01160	55	116	55	106	45	86	37	71
55K	01800	75/90	180	75	144	55	110	45	86
75K	02160	110	216	90	180	75	144	55	110
90K	02600	132	260	110	216	90	180	75	144
110K	03250	160	325	132	260	110	216	90	180
132K	03610	185	361	160	325	132	260	110	216
160K	04320	220	432	185	361	160	325	132	260
185K	04810	250	481	220	432	185	361	160	325
220K	05470	280	547	250	481	220	432	185	361
250K	06100	315	610	280	547	250	481	220	432
280K	06830	355	683	315	610	280	547	250	481
315K	07700	400	770	355	683	315	610	280	547
355K	08660	450	866	400	770	355	683	315	610
400K	09620	500	962	450	866	400	770	355	683
450K	10940	560	1094	500	962	450	866	400	770
500K	12120	630	1212	560	1094	500	962	450	866

•Overload current rating

SLD	110% 60 s, 120% 3 s (inverse-time characteristics) at surrounding air temperature of 40°C
LD	120% 60 s, 150% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C
ND	150% 60 s, 200% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C
HD	200% 60 s, 250% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C

*1: The applicable motor capacity is the maximum applicable capacity of a Mitsubishi Electric 4-pole standard motor.

 $\ensuremath{\textcircled{\sc blue}}$ For selection of the DC reactor and the converter unit, refer to page 223.

Dedicated inverter for specialized field **FR-A800 Plus** Series

FR-A800-CRN

•Reduction in tact time

Specialized functions such as anti-sway control facilitate efficient operation.

Load slippage prevention

Optimum brake operation is obtained. It is possible to detect the slippage at a start of operation.

• Dedicated monitoring functions Overload detection and start time counting are possible.

Easier maintenance

Protection against vibration, dust and dirt, or corrosion is also available.

A800 Plus

A800 Plus

ASOO Plus

A MIRAR

A new lineup of dedicated inverters for specialized fields are born!

Plus! The optimum functions for each dedicated field are added to the already high performance and high functionality FR-A800 series inverter.

FR-A800-R2R

- System simplification Winding/unwinding can be stabilized by the inverter alone.
- Easy startup and adjustment Parameters can be used for mechanical adjustment according to applications.

• Wide range of applications The inverter offers four types of control functions which enables the use in various system applications suc as winding/unwinding in the wire drawing machines and printers.

FR-A800-LC

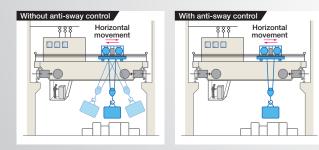
•Effective solution for downsizing of the enclosure

Liquid cooling enables installation of the cooling system outside of the enclosure.

• Dedicated monitoring functions The coolant flow is monitored for guick detection of system faults.

Pursuing optimum functions to meet our customers' needs

A lineup of dedicated inverters for specialized fields are offered. Plus! The optimum functions for each dedicated field are added to the already high performance and high functionality FR-A800 series inverter.


Optimum functions for cranes

FR-A800-CRN

The inverter has various functions ideal for a crane application such as reduction in tact time, load slippage prevention, etc.

Reduction in tact time

By using the Mitsubishi Electric's original anti-sway control technology, the swinging of an object moved by a crane is suppressed at the time of stopping, even without operator's input adjustment. This control cuts down the tact time and facilitates efficient operation.

Load slippage prevention

- The highly scalable brake sequence function enables the output of a brake opening signal for the optimum brake operation calculated from the load torque or the speed.
- Slippage during the start of a lift can be checked. (A speed detector such as an encoder is required.)

Dedicated monitoring functions

- A signal can be output when too much load is applied.
- The inverter starting times can be counted to determine the timing of the maintenance.

Easier maintenance

- A strong vibration may occur in some operating conditions, for example, during the crane traveling. Inverters with enhanced vibration resistance are available. They have components fixed to the circuit board with adhesive and wires that are tied in place with cable ties.
- •Using the inverter in a dusty environment may cause faults such as a short circuit. Inverters with circuit board coating (conforming to IEC 60721-3-3 3C2/3S2) and plated conductors are available for improved environmental resistance.

Model

	F R - A 8 2 0 - 0.4K - 1 - 60 CRN											
2	Voltage class 200 V class	Symbol 0	Standard model*4	Capacity ^a 0.4K to	Description Inverter ND rated	Symbol	FM	Communication type RS-485	Symbol 60	Circuit board coating (IEC60721-3-3 3C2/3S2 compatible)	Plated conductor Without	Dedicated function Crane dedicated model
4	400 V class	2	Separated converter type	500K	capacity (kW)	2 E1 E2	CA*2 FM CA*2	Ethernet	06 ^{*3} 61 16 ^{*3}	With	With Without With	model

 Inverter model
 Inverter capacity

 FR-A820
 0.4kW to 90kW

 FR-A840
 0.4kW to 280kW

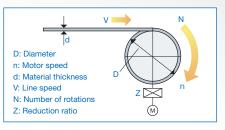
 FR-A842
 315kW to 500kW

: Models can be alternatively indicated with the inverter rated current (SLD rating).

2: For the CA type, the monitor output terminal F/C operates as terminal CA (analog current output: 0 to 20 mADC), not as terminal FM (pulse train output).

*3: Available for the 5.5K or higher.

*4: For the 75K or higher inverter, or whenever a 75 kW or higher motor is used, always connect a DC reactor (FR-HEL), which is available as an option.


Optimum functions for roll to roll applications

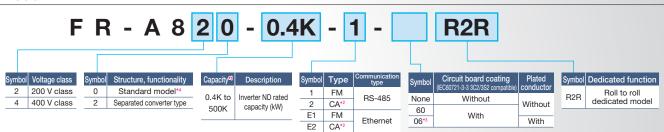
FR-A800-R2R

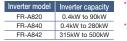
The inverter can be used in a wide variety of systems with various dedicated functions. High productivity can be achieved by stable tension control.

System simplification

The FR-A800-R2R inverter has various dedicated functions such as winding diameter calculation, providing stable winding/unwinding control independently.

Easy startup and adjustment


- Mechanical adjustment according to applications can be achieved just by setting parameters, which enables the startup and adjustment work of the system by the inverter alone.
- Tension PI gain tuning: By automatically adjusting the tension PI gain for PID control, the time required for adjustment is significantly cut down.


Wide range of applications

The inverter offers four types of control functions which enables the use in various system applications such as winding/unwinding in the wire drawing machines and printers.

- Dancer feedback speed control
- Tension sensor feedback speed control
- Tension sensorless torque control
- Tension sensor feedback torque control

Model

*1: Models can be alternatively indicated with the inverter rated current (SLD rating).

*2: For the CA type, the monitor output terminal F/C operates as terminal CA

(analog current output: 0 to 20 mADC), not as terminal FM (pulse train output).

*3: Available for the 5.5K or higher.

*4: For the 75K or higher inverter, or whenever a 75 kW or higher motor is used, always connect a DC reactor (FR-HEL), which is available as an option.

FR-A800-LC

Liquid Cooled Type Inverter

Coolant is used for cooling the inside of the inverter. Liquid cooling enables the use of inverters for tunnel boring machines or chillers in the environments where heat is difficult to be dissipated.

Effective solution for downsizing of the enclosure

A smaller enclosure can be used since the quantity of the heat dissipated in the enclosure is reduced.

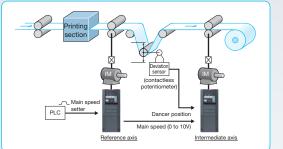
Dedicated monitoring functions

A sensor (flow switch) is attached at the inlet of coolant to send a signal to the inverter. When the coolant flow rate decreases, a warning is output, enabling quick, direct detection of system faults.

Model

F R - A 8 4 0 - 280K - 1 - LC

						L					
Sym	bol Voltage class	Symbol	Description	Symbol	Туре	Communication type	Symbol	Circuit board coating	Plated	Symbol	Function
4	400 V class	110K to 280	K Inverter ND rated capacity (kW)	1	FM	RS-485	News	(IEC60721-3-3 3C2/3S2 compatible)	conductor	LC	Liquid
		03250 to 0683	Inverter rated current (SLD rated current	2	CA*1	R5-400	None	Without	Without		cooled type
		00200100000	of the standard FR-A800 inverter) (A)	E1	FM		60 06	With	14/241-		
				E2	CA*1	Ethernet	06		With		


1: For the CA type, the monitor output terminal F/C operates as terminal CA (analog current output: 0 to 20 mADC), not as terminal FM (pulse train output).

Application example

BEST SUITED FOR EVERY MACHINE

Line Control (Winding and Unwinding)

Material tension is kept constant by employing speed control and torque control to eliminate slack and uneven winding. By using a motor with the speed ratio most appropriate for the machine, the inverter capacity can be downsized.

Typical industries

Textile industry

Pulp, paper, paper products manufacturing industries

Steel industry

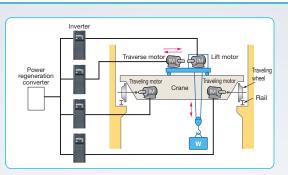
Dancer control NEW

The dancer control detects the dancer roll positions and performs PID operation to keep the sheet tension constant.

Traverse function **NEW**

The traverse function, used for the traverse axis of spinning machine, prevents uneven winding or collapsing.

Torque accuracy


	Real sensorless vector control	Vector control
Torque control range	1:20	1:50
Absolute torque accuracy*1	±20%	±10%*3
Repetitive torque accuracy*2	±10%	±5%* ³

1: Difference between the actual torque and the torque command

Fluctuation between the average of the actual torgue and the actual measured torgue (repeatability of the torgue) *3: When online auto tuning (adaptive magnetic flux observer) enabled

Cranes

Relentless operation is possible with HD rating when lifting. And when traveling, vibrations applied to objects being conveyed are suppressed with anti-sway control, facilitating efficient operation.

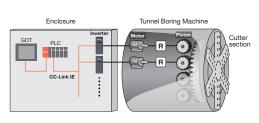
Typical industries

Lumber, wood product manufacturing industries	Steel industry
Warehousing	Water transportation
Textile industry	Metal products manufacturing

[Starting torque]

Real sensorless vector control 200% (ND rating) Vector control 200% (ND rating) (150% of initial setting for the 5.5K and higher) [Zero-speed torque] Vector control: 200% (Select HD rating.)

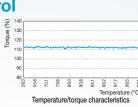
PLC function **NEW**


By employing synchronous operation for gate-type cranes, positional displacement of both axes is corrected during travel, achieving highly accurate control without using an external controller.

Anti-sway control NEW

When an object is moved by a crane, swinging at the time of stopping is suppressed on the crane's transverse axis or traveling axis. This control cuts down the tact time and facilitates efficient operation.

Tunnel Boring Machines



Inverters can be used to provide high starting torque for digging, and for transferring earth and sand after digging. A lineup of products compatible with the IP55 protective structure is available as a separate series.

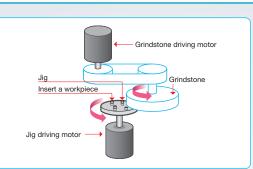
Real sensorless vector control

Motors are controlled without encoders, which are susceptible to hazardous environment. Use of such motors naturally provides higher reliability. Torque accuracy has also improved because the temperature is better controlled.

Typical industries

Construction industry

This function balances the load between motors when using multiple inverters.


Droop control

CC-Link IE communication

CC-Link IE communication enables a programmable controller or a GOT to control multiple inverters. By using Ethernet cables, less wiring is required.

Machine Tools

Point

The rotation speed can be set according to the material being processed. Stable high-speed rotation is also possible.

Typical industries

High-speed operation

[Operating frequency] V/F control Vector control

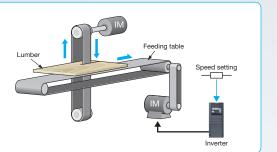
V/F control 590 Hz Vector control 400 Hz Real sensorless vector control 400 Hz

Torque limit function

This is effective in preventing machine damage (tool damage prevention, etc.) due to sudden disturbance torque.

Orientation control (vector control)

The inverter can adjust the stop position (Orientation control) using an encoder attached to a place such as the main shaft of the machine.


Application example

BEST SUITED FOR EVERY MACHINE

Wood Processing Machines

Even when processing areas of varying hardness such as lumber knots, processing time delays are suppressed by minimizing reductions in motor speed.

Forestry

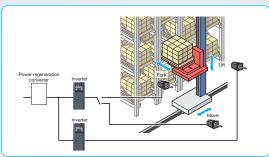
Typical industries

Lumber, wood product manufacturing industries

Real sensorless vector control, vector control

Improved speed response to sudden load fluctuations when compared with the previous model (FR-A700).

[Response speed]


- Real sensorless vector control 50 Hz*1 (A700: 20 Hz)
 Vector control 130 Hz (A700: 50 Hz)
- *1: At 3.7 kW with no load. Differs depending on the load conditions and motor capacity.

Torque limiting function

This function is effective in preventing machine damage (tool damage, etc.) due to sudden disturbance torque.

Conveyance

The new series offers a wealth of functionality suited to applications such as high-accuracy conveyance and target position stoppage, which contributes to reduction in tact time.

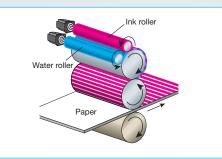
Typical industries

Steel industry	Metal products manufacturing
Lumber, wood product manufacturing industries	Textile industry
Water transportation, fishing industry	Warehousing

Multiple axes are strictly controlled to run at the same speed without using a driving belt. This control method provides driving accurate enough for transporting glass substrates without damaging them. Simple positioning control is also available.

(when high frequency superposition control selected in combination with $\ensuremath{\mathsf{MM-CF}}\xspace$)

Increased magnetic excitation deceleration **NEW**


Deceleration time can be reduced without a brake resistor. Tact time can be eliminated at conveyor lines, etc.

PLC function **NEW**

When a few sensors are used to check the presence of goods on a conveyor and the arrival of such goods, the inverter can directly receive such signals from the sensors for the PLC control.

Printing Machines

The highly-accurate speed control minimizes color unevenness and displaced prints.

Typical industries

Printing and related industries

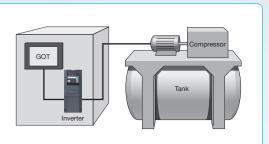
Speed control

	Real sensorless vector control	Vector control	PM sensorless vector control
Speed response	50 Hz*1	130 Hz	50 Hz
Speed control	1:200	1:1500	1:1000*3
•	(when power drive	(both driving/	(when HD rating selected)
range	at 0.3 Hz to 60 Hz)	regeneration ^{*2})	(when HD falling selected)

*2: If using regeneration unit (option) during regeneration

*3: When high frequency superposition control selected in combination with the MM-CF

PM sensorless vector control


The speed fluctuations of the ink roller axis and water roller axis are minimized to eliminate print unevenness.

[Speed fluctuation ratio] ±0.05% (Digital input)

"No encoder" means less trouble and higher reliability.

Compressors

The PM sensorless vector control is useful in generating high starting torque. By using this control method with an IPM motor, much power can be saved. This small motor also makes the machine small.

Typical industries

Steel industry	Metal products manufacturing
Lumber, wood product manufacturing industries	Textile industry
Water transportation, fishing industry	Warehousing

PM sensorless vector control

Smooth operation is possible even at start-up under high load.

[Starting torque] 1.5 kW or lower: 200%, 2.0 kW or higher: 150% When high frequency superposition control selected in combination with MM-CF

PID control

Pressure can be automatically adjusted by converting signals from the encoder to inverter input signals and feeding them back.

Parallel operation function **NEW**

Even a large compressor can be operated by FR-A842-P inverters with parallel operation function, which can operate a 630 kW or higher motor.

PLC function

CONTRIBUTION TO FACTORY AUTOMATION

The PLC function will help you to provide the control sequence best suited for the machine specifications.

Inverter operation sequence customized for the machine

•A set of operations (operation at different signal inputs, signal and monitor outputs at different inverter status, etc.) can be freely programmed in accordance with the machine specifications. For example, a shutter opening/closing can be performed based on a signal from a sensor, or based on the opening/closing times.

Control programs can be created in sequence ladders using the inverter setup software (FR Configurator2).

2 Realizes the decentralized control

 The control of the whole system is decentralized to inverters that mange their subordinating devices individually.

 A group of dedicated sequence programs is created and saved in each inverter. The master controller no longer has to process all the sequence programs, and the decentralized system accepts program changes more flexibly.

3 Automatic operation in accordance with the time

•With the real-time clock, automatic operation can be performed at certain times (when the optional LCD operation panel (FR-LU08) is used).

4 Useful functions

User parameter

Up to 50 parameters, which are linked with the data registers, can be saved. The variables (data registers) used in the PLC function can be saved as inverter parameters. Furthermore, parameter settings can be saved in the EEPROM of inverter. When results of calculation using the PLC function are saved in the parameters, the data can be retained after the power is turned OFF.

User initiated fault

Inverter output can be shut off under conditions other than those of the existing protective functions. Up to five specific fault-initiating conditions can be set to activate a protective function and shut off the inverter output.

Monitored item for the user

Special register values can be displayed for monitoring on the operation panel. Arbitrary data designated by the user such as results of calculation using the PLC function can be displayed.

- **Inverter parameter read/write** Parameter settings can be changed using sequence programs. The acceleration/deceleration patterns can also be set with sequence programs to be changed at certain operation statuses. You can choose RAM or EEPROM to save the parameter settings. When the settings are changed frequently, choose RAM.
- **PID function** Two different loops of PID inverter operations can be pre-set, and those can be controlled using sequence programs.
- Inverter operation lock
 The inverter operation can be restricted for the command sources other than the sequence programs.

PLC function

Item	Description			
I/O				
General-purpose I/O	Sequence programs enable I/O signal transmission to/from the inverter and its plug-in options.			
	Sequence programs enable reading of analog input values or analog output transmission by the inverter,			
Analog I/O	and analog output transmission to the plug-in options.			
Pulse train I/O	Sequence programs enable pulse train inputs (to terminal JOG) and pulse train outputs (from terminal F/C(FM)).			
Inverter parameter read/write	Sequence programs enable inverter parameter write/read.			
	Fifty user parameters (Pr.1150 to Pr.1199) are available and are linked with the data registers D206 to D255,			
User parameter	which accept direct access by sequence programs.			
CC-Link	A plug-in option (FR-A8NC) enables handling of remote registers as arbitrary data in the sequence programs.			
Special function				
PID operation	Inverter's PID operations can be set (up to two loops).			
User initiated fault	Up to five fault-initiating conditions can be set to activate a protective function.			
Fault clear	The protective function occurring in the inverter can be reset.			
Inverter operation lock	Inverters can start up while the PLC function is running.			
Monitored item for the user	Desired data is displayable on the operation panel.			

Application example

Crane control

Point

The traveled distance (total number of travel pulses) of each wheel is directly read from the encoder installed at the wheel. The pulses from the two wheels are then compared, and their speed is adjusted to synchronize the wheel positions. There is no need to use an external controller to offset speed, allowing high accuracy control.

.....

User initiated fault

Up to five protective functions operating under specific conditions can be set. Protective functions can be triggered to block inverter output at such times as when positional displacements are not eliminated even after offsetting speed over a fixed period of time, or pulses from the PLGs on both wheels are not input.

Crane movement direction Stabilizer and encoder1 Left edge wheel drive inverter Right edge wheel drive inverter

Y1

Stop senso

Conveyor control

The workpiece positions detected by sensors are directly reported to the inverter, and the inverter sends out the operation commands to the conveyor robot and to the extruding machine. Whole control can be performed by an inverter, in accordance with the movement of its peripheral equipment.

Inverter parameter read/write

Changes can be made to inverter parameters from the sequence program. The acceleration/deceleration time and pattern can be set based on the type of workpiece.

Inverter operation lock

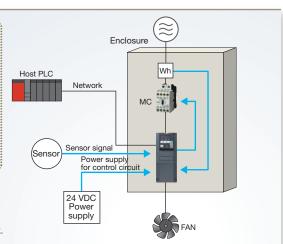
Operation is possible only when the sequence function is enabled. Changes to settings caused by operator error can be avoided.

n. Conveyor robot Motor Power supply Motor Inputs X0 to 2

Extruding

machine

Fan control


Signals sent via the enclosure (relay panel, etc.) such as input magnetic contactor signals, watt hour meter signals, and sensor signals can be read directly into the inverter and controlled. A fan can be controlled in accordance with the conditions without using relays, etc. Furthermore, by using an external 24 VDC power source for the control power supply, input machine signals can be turned ON and OFF regardless of whether there is an input power source. And by employing an external 24 VDC power supply for the control power, input machine signals can be turned ON and OFF, regardless of the existence of a main circuit power supply.

CC-Link

.....

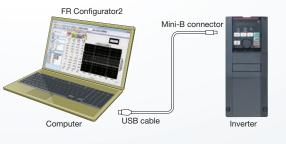
A plug-in option (FR-A8NC) enables handling of remote registers as arbitrary data in the sequence programs.

A variety of equipment inside the factory can be centrally controlled with a CC-Link Network.

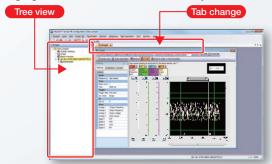
FR Configurator2 (SW1DND-FRC2)

DELIVERING A COMFORTABLE INVERTER OP

From inverter startup to maintenance, this versatile software allows the user to specify settings easily at the computer.


[Compatible operating systems]

Windows® 10, Windows® 8.1/Pro/Enterprise, Windows® 8, Windows® 7, (32-bit, 64-bit), Windows Vista® (32-bit)


Easy connection with a USB cable

A USB connector (Mini-B connector) is provided as standard. Easy connection to the computer without the need for a converter.

Intuitive user interface

Connected inverters are displayed in tree view format. Windows for each function can be accessed by changing the tab for maximum efficiency.

Work can be carried out away from the equipment using a USB memory device

By loading trace data and parameter settings copied to a USB memory device into FR Configurator2, analysis and adjustments can be carried out with ease away from the equipment.

Sequence control (Developer function)

The Developer function is used for creating sequence programs and writing them to the inverter to enable the use of the PLC function of the inverter.

A 1 1 1 1 1 1 1	A rente		13 3538	41
Selptin 8.x		tests (*	Auto Shi Shake Labor Setting St	
	THE PROPERTY AND ADDRESS			
200 B (1 A)	1.1.1			
B R/ Franke		*		
O Bulleting Canada	11	1 m		
0 (C) Deterfuter				
Called and Program Setting	Coba Later Latery Co.	100 Contraction		
A PE NON	Case - Case	Late fore	Data Tate	
D Q August	1 10,000	1 40	PrOced.	
+ distant	1			
Could Labor				
winnerstation of the	Cloud Labor Taking 180	PL TONE		
Arrest	1	Later Name	they have	1.1
and the second se	112			
Constitution	141	1		-
1				
Deput				
NAME OF COLUMN				
16.1662 Deptere	. Cited	CHINE .		
2 million of 1		Malence from server.	and the second se	
2 Meretar		Award Safe Wat to	and and	
a prince -				

Free trial version Supported

The function with the marking above is available in the free trial version (usable free of charge with limited functions). It can be downloaded at Mitsubishi Electric FA Global Website.

Function	Free trial version	Function	Free trial version			
Parameter list	0	Developer	×			
Diagnosis	0	USB memory	×			
Graph	×	parameter copy file edit	~			
Batch monitor	×	Ethernet parameter setting	0			
Test operation	0	iQSS backup file conversion	0			
I/O terminal monitor	×	Help	0			
Convert O O: Available, X: Not available						
A full functional trial version, which has the same functionality as the release version, is						

A full functional trial version, which has the same functionality as the release version, is also offered for a limited period of 20 days.

OPERATING ENVIRONMENT

Efficient startup settings

System settings

This sets the method used to connect the inverters and the computer. Automatic recognition of connected inverters can also be set The station number, model, capacity, and plug-in options of the connected inverters can also be set manually.

Test operation

Operating commands, frequency settings, and the operating mode can be set for the selected inverter.

Management	and the		
Paramete antide			
			Canad and the
	a second second		
Street - Rell	ACTIVATION AND	· Constantine	
		120100-003	
territe, make again, and consultor of	An and property		
	laters .		downey.
interest in the second	1 Develop) - fere	101	
diama di	N 8	then the	
2 2	3 3	2 2	
3 3	프 프		
	신 신	김 경	
김 김	1 1	1 1	

Free trial version Supported

Free trial version Supported

Conversion function

Free trial version Supported

Parameters can be set with the parameter auto conversion function when renewing from the FR-A700 series or FR-A500 series.

Batch monitor function

monitored simultaneously.

status can be monitored.

Multiple inverter monitor items can be

With a terminal monitor, the ON/OFF

USB memory parameter copy file edit

Parameter settings (USB memory device parameter copy file)

read from the inverter to a USB memory device can be edited. With the iQSS backup file conversion function, the files in the

backup/restore format generated by the GOT can be converted

Perform pre-operation adjustments and checks during operation with ease

Parameter list

Parameters for selected station numbers can be displayed and changed.

2.60	ten met Hant Alaten unte Alaten	- Al cher - Terenster cher - Ballente - Ma	to miles P	ine Mileie at	0	
		Lobus lat. Settings by Bartlet + Servers	and the second second	Best Ned 1		
Re.	Sala	Setting range	Bit and	Initial value	Setting value	
2	Torquis Becolt	0 10 30	0.1%			
	Sevenan frequency	816120	1014	128	126	
2	www.unterpressy	# N 120	0.0149		4	
3	Ease Tesuetor	0 10 100	2.0142		95	
4	Walk-scent anting (high speed)	8 to 590	Edany		00 36	
	Well-append and ing (which append)	0 10 530	0.00%	36		
.6	Wath-speed setting (bw speed)	0 to 520	Litez	. 10	10	
	Acceleration line	6 to 5600	8.74			
	Construction line	0 10 2000	8.18			

I/O signals can be assigned using settings by function.

Offline auto tuning

Tuning is performed in wizard format after specifying necessary parameter settings.

Easy-to-follow platform facilitates easy maintenance

Diagnosis (fault history)

Inverter fault history can be read and displayed together with the alarm occurrence time. Activating faults can be displayed, and inverters can also be reset.

Help

Displays the content of inverter and software Instruction Manuals.

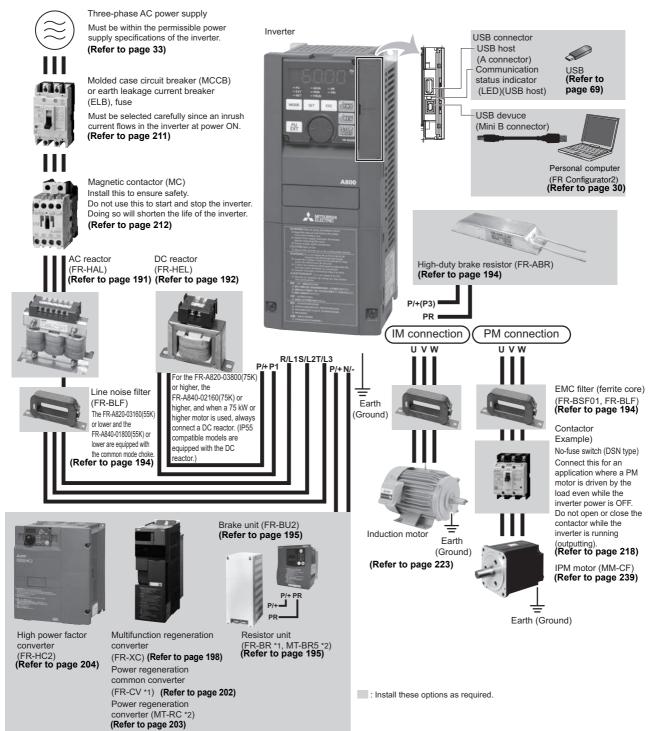
Free trial version Supp

Free trial version Supported

Graph function

and edited.

Inverter data can be sampled and displayed in a graphical format. Trace data can also be read and displayed in a graph.


Life diagnosis

Life information read from the inverter is displayed. Check marks appear in the life alarm fields of inverter parts that have exceeded their replacement schedule.

Diagnosis results can also be output to a file.

LIN THE LIN THE PARTY NEW YORK

• Connection example for standard models

*1 Compatible with the FR-A820-03160(55K) or lower / FR-A840-01800(55K) or lower.

*2 Compatible with the FR-A820-03800(75K) or higher / FR-A840-02160(75K) or higher.

Standard Specifications

• Rating (Standard model)

200 V class

				00046	00077	00105	00167	00250	00340	00490	00630	00770	00930	01250	01540	01870	02330	03160	03800	04750	
	Model FR-	\820-[](-Е) (-GF)(-GN)	0.4K	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K	11K	15K	18.5K	22K	30K	37K	45K	55K	75K	90K	
		SLD		0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90/110	132	
Ap	plicable motor	LD		0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	
	pacity (kW) *1	ND (initial set	ting)	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	
		HD		0.2 *2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	
		SLD		1.8	2.9	4	6.4	10	13	19	24	29	35	48	59	71	89	120	145	181	
	Rated	LD		1.6	2.7	3.7	5.8	8.8	12	17	22	27	32	43	53	65	81	110	132	165	
	capacity (kVA) *3	ND (initial set	ting)	1.1								82	110	132							
	-	HD		0.6	1.1 1.9 3 4.2 6.7 9.1 13 18 23 29 34 44 55 67								67	82	110						
		SLD		4.6	7.7	10.5	16.7	25	34	49	63	77	93	125	154	187	233	316	380	475	
	Rated current	LD		4.2	7	9.6	15.2	23	31	45	58	70.5	85	114	140	170	212	288	346	432	
	(A)	ND (initial set	ting)	3	5	8	11	17.5	24	33	46	61	76	90	115	145	175	215	288	346	
t		HD		1.5	3	5	8	11	17.5	24	33	46	61	76	90	115	145	175	215	288	
Output		SLD		110% 6	0 s, 120	% 3 s (ii	nverse-t	ime cha	racterist	ics) at s	urroundi	ng air te	emperatu	re of 40	°C						
ō	Overload current rating	LD		120% 6	i0 s, 150)% 3 s (i	nverse-t	ime cha	racterist	tics) at s	urroundi	ing air te	emperatu	ure of 50	°C						
	*4	ND (initial set	ting)	150% 6	0 s, 200)% 3 s (i	nverse-t	ime cha	racterist	tics) at s	urroundi	ing air te	emperatu	ure of 50	°C						
		HD		200% 6	% 60 s, 200% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C % 60 s, 250% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C																
	Rated voltage	*5		Three-p	hase 20	00 to 240) V														
		Brake transis	tor	Built-in			-		r						FR-BU	2 (Optio	n)				
	Regenerative braking			150% te	150% torque/3%ED *6 100% torque/ 3%ED *6 20% torque/ 2%ED *6 20% torque/continuous													10% to continu			
	6	FR-ABR (when the	option is used)	150% te 10%ED		100% t	orque/10	0%ED			100% t	orque/6	%ED		_	_	_	_	_	—	
	Rated input AC voltage/free	quency		Three-p	hase 20	00 to 240) V 50 H	lz/60 Hz	:												
	Permissible AC	voltage fluctu	ation	170 to 264 V 50 Hz/60 Hz																	
	Permissible fre	quency fluctua	ation	±5%																	
		SLD		5.3	8.9	13.2	19.7	31.3	45.1	62.8	80.6	96.7	115	151	185	221	269	_	-	—	
		Without DC	LD	5	8.3	12.2	18.3	28.5	41.6	58.2	74.8	90.9	106	139	178	207	255	-	-	—	
		reactor	ND (initial setting)	3.9	6.3	10.6	14.1	22.6	33.4	44.2	60.9	80	96.3	113	150	181	216	266	_	—	
	Rated input		HD	2.3	3.9	6.3	10.6	14.1	22.6	33.4	44.2	60.9	80	96.3	113	150	181	216	—	—	
	current (A) *8		SLD	4.6	7.7	10.5	16.7	25	34	49	63	77	93	125	154	187	233	316	380	475	
pply		With DC	LD	4.2	7	9.6	15.2	23	31	45	58	70.5	85	114	140	170	212	288	346	432	
Power supply		reactor	ND (initial setting)	3	5	8	11	17.5	24	33	46	61	76	90	115	145	175	215	288	346	
Pov			HD	1.5	3	5	8	11	17.5	24	33	46	61	76	90	115	145	175	215	288	
			SLD	2	3.4	5	7.5	12	17	24	31	37	44	58	70	84	103	—	-	<u> </u>	
		Without DC	LD	1.9	3.2	4.7	7	11	16	22	29	35	41	53	68	79	97	—	—	—	
		reactor	ND (initial setting)	1.5	2.4	4	5.4	8.6	13	17	23	30	37	43	57	69	82	101	_	—	
	Power supply		HD	0.9	1.5	2.4	4	5.4	8.6	13	17	23	30	37	43	57	69	82	_	—	
	capacity (kVA) *9		SLD	1.8	2.9	4	6.4	10	13	19	24	29	35	48	59	71	89	120	145	181	
		With DC	LD	1.6	2.7	3.7	5.8	8.8	12	17	22	27	32	43	53	65	81	110	132	165	
		reactor	ND (initial setting)	1.1	1.9	3	4.2	6.7	9.1	13	18	23	29	34	44	55	67	82	110	132	
			HD	0.6	1.1	1.9	3	4.2	6.7	9.1	13	18	23	29	34	44	55	67	82	110	
Pro	tective structur	e (IEC 60529)	*10	Enclose	e type (II	P20)									Open t	ype (IP0	0)			<u> </u>	
Со	oling system	,		Self-co		-	air cooli	ing													
Ap	prox. mass (kg)			2.0	2.2	3.4	3.4	3.4	6.7	6.7	8.3	15.5	15.5	15.5	22	42	42	54	74	74	
_																				-	

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard motor.

*2 The 0.2 kW motor capacity is applicable under V/F control only.

*3 The rated output capacity indicated assumes that the output voltage is 220 V for 200 V class.

*4 The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load.

*5 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$.

*6 Value for the built-in brake resistor

*7 Value for the ND rating

*8 The rated input current indicates a value at a rated output voltage. The impedance at the power supply side (including those of the input reactor and cables) affects the rated input current.

*9 The power supply capacity is the value when at the rated output current. It varies by the impedance at the power supply side (including those of the input reactor and cables).

*10 FR-DU08: IP40 (except for the PU connector section)

400 V class

				00023	00038	00052	00083	00126	00170	00250	00310	00380	00470	00620	00770	00930	01160	01800	02160	02600	03250	03610	04320	04810	05470	06100	06830
	Model FR-A8	340-[](-E)(-	GF)(-GN)	0.4K		1.5K	2.2K	_	5.5K	_	11K	15K	18.5K		30K	37K	45K	55K	75K	90K	110K		160K			250K	
		SLD				2.2	3.7	5.5		11	15			30	37	45	55	75/	110		160			250	280	315	355
		SLD		0.75	1.5	2.2	3.1	5.5	7.5		15	18.5	22	30			55	90	110	132	160	185	220	250	200	315	300
	plicable motor pacity (kW) *1	LD		0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185		250	280	315
	····) (····) ·	ND (initial se	tting)	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	250	280
		HD		0.2*2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	250
	Deteri	SLD		1.8	2.9	4	6.3	10	13	19	24	29	36	47	59	71	88	137	165	198	248	275	329		417	465	521
	Rated capacity	LD		1.6	2.7	3.7	5.8	8.8	12	18	22	27	33	43	53	65	81	110	137	165	198	248	275	329	367	417	465
	(kVA) *3	ND (initial se	tting)	1.1	1.9	3	4.6	6.9	9.1	13	18	24	29	34	43	54	66	84	110	137	165	198	248	275	329	367	417
		HD		0.6	1.1	1.9	3	4.6	6.9	9.1	13	18	24	29	34	43	54	66	84	110	137	165	198	248	275	329	367
		SLD		2.3	3.8	5.2	8.3	12.6	17	25	31	38	47	62	77	93	116	180	216	260	325	361	432	481	547	610	683
	Rated current	LD		2.1	3.5	4.8	7.6	11.5	16	23	29	35	43	57	70	85	106	144	180	216	260	325	361	432	481	547	610
	(A)	ND (initial se	tting)	1.5	2.5	4	6	9	12	17	23	31	38	44	57	71	86	110	144	180	216	260	325	361	432	481	547
Ħ		HD		0.8	1.5	2.5	4	6	9	12	17	23	31	38	44	57	71	86	110	144	180	216	260	325	361	432	481
Output	Overlaad	SLD														tempe											
0	Overload current rating	LD														tempe											
	*4	ND (initial se	tting)													tempe											
		HD							e-time	e char	acteris	stics) a	at surr	oundin	ng air	tempe	rature	of 50	°C								
	Rated voltage					se 380	to 50	0 V																			
		Brake transis		Built-																U2(Op	,						
	Regenerative	Maximum br	ake torque *7	100%	5 torqu	ıe/2%l	ED *6				20%	torque	e/conti	nuous	;				10%	torque	e/conti	nuous		1			1
	braking	FR-ABR (when the used)	option is	100%	5 torqu	ıe/10%	6ED				100%	6 torqu	ıe/6%	ED	— *1	2			_	_	_	_	_	_	_	_	_
	Rated input AC voltage/fre	quency		Three	e-phas	se 380	to 50	0 V 50) Hz/6	i0 Hz	×11												•				
	Permissible A	C voltage fluc	tuation	323 t	o 550	V 50 ł	Hz/60	Hz																			
	Permissible fre	equency fluctu	uation	±5%																							
			SLD	3.2	5.4	7.8	10.9	16.4	22.5	31.7	40.3	48.2	58.4	76.8	97.6	115	141	_	_	_	_	_	_	_	_	—	_
			LD	3	4.9	7.3	10.1	15.1	22.3	31	38.2	44.9	53.9	75.1	89.7	106	130	_	_	_	—	_	_	_	_	—	—
		Without DC	ND																								
		reactor	(initial setting)	2.3	3.7		8.3	12.3	17.4	22.5	31	40.3		56.5	75.1	91	108	134	_	_	_	_	_	_	_	_	_
	Rated input		HD	1.4	2.3	3.7	6.2	8.3	12.3	17.4	22.5	31	40.3	48.2	56.5	75.1	91	108	—	_	—	—	—	_	_	—	—
	current (A) *8		SLD	2.3	3.8	5.2	8.3	12.6	17	25	31	38	47	62	77	93	116	180	216	260	325	361	432		547	610	683
≥			LD	2.1	3.5	4.8	7.6	11.5	16	23	29	35	43	57	70	85	106	144	180	216	260	325	361	432	481	547	610
Power supply		With DC reactor	ND (initial setting)	1.5	2.5	4	6	9	12	17	23	31	38	44	57	71	86	110	144	180	216	260	325	361	432	481	547
Ъ О С			HD	0.8	1.5	2.5	4	6	9	12	17	23	31	38	44	57	71	86	110	144	180	216	260	325	361	432	481
_			SLD	2.5	4.1	5.9	8.3	12	17	24	31	37	44	59	74	88	107	—	_	—	—	—	—	—	—	_	—
			LD	2.3	3.7	5.5	7.7	12	17	24	29	34	41	57	68	81	99	_	_	_	—	_	_	_	_	_	_
		Without DC reactor	ND (initial setting)	1.7	2.8	4.7	6.3	9.4	13	17	24	31	37	43	57	69	83	102	_	_	_	_	_	_	_	_	_
	Power supply		HD	1.1	1.7	2.8	4.7	6.3	9.4	13	17	24	31	37	43	57	69	83	_	F	<u> </u>	L	_	<u> </u>	—	<u> </u>	—
	capacity (kVA) *9		SLD	1.8	2.9		6.3	10	13	19	24	29	36	47	59	71	88		165	198	248	275	329	367	417	465	521
	(1. 1.) *9		LD	1.6	2.7		5.8	8.8	12	18	22	27	33	43	53	65	81	110	137	165	198	248	275		367	417	465
		With DC reactor	ND (initial setting)	1.1	1.9		4.6	6.9	9.1	13	18	24	29	34	43	54		84	110	137		198			329		417
			HD	0.6	1.1	1.9	3	4.6	6.9	9.1	13	18	24	29	34	43	54	66	84	110	137	165	198	248	275	329	367
Pr	otective structur	e (IEC 60520				pe (IP2		4.0	0.9	9.1	13	10	24	23		43 h type			04	110	137	100	190	240	210	529	507
	oling system	00023	7.10					ed air (coolin	a					Oper	, type	(11 00)										
	prox. mass (kg))				3.0	3.4			-	8.3	8.3	15	15	23	41	41	43	52	55	71	78	117	117	166	166	166
٦þ	PION. 111035 (KY)	/		0.0	5.0	5.0	J.+	0.4	5.1	0.7	0.0	0.0	15	15	20	171	т.	70	52	55	· ·	10		/	100	100	100

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard motor.

*2 The 0.2 kW motor capacity is applicable under V/F control only.

*3 The rated output capacity indicated assumes that the output voltage is 440 V for 400 V class.

The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter *4 and motor to return to or below the temperatures under 100% load.

*5 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$.

*6 Value for the built-in brake resistor

Value for the ND rating *7

The rated input current indicates a value at a rated output voltage. The impedance at the power supply side (including those of the input reactor and cables) affects the *8 rated input current.

*9 The power supply capacity is the value when at the rated output current. It varies by the impedance at the power supply side (including those of the input reactor and cables).

*10 FR-DU08: IP40 (except for the PU connector section)

11 For the power voltage exceeding 480 V, set **Pr:977 Input voltage mode selection**. (For details, refer to).
*12 The regenerative braking capability of the inverter can be improved with a commercial brake resistor. For the details, please contact your sales representative.

Rating (Separated converter types)

400 V class (Standard type)

Inverter

Model ED A942		07700	08660	09620	10940	12120					
Model FR-A842-](-E)(-GF)(-GN)	315K	355K	400K	450K	500K					
	SLD	400	450	500	560	630					
Applicable motor capacit	y LD	355	400	450	500	560					
kW) *1	ND (initial setting)	315	355	400	450	500					
	HD	280	315	355	400	450					
	SLD	587	660	733	834	924					
Rated capacity (kVA) LD	521	587	660	733	834					
*2	ND (initial setting)	465	521	587	660	733					
	HD	417	465	521	587	660					
	SLD	770	866	962	1094	1212					
Rated current (A)	LD	683	770	866	962	1094					
	ND (initial setting)	610	683	770	866	962					
5	HD	547	610	683	770	866					
	SLD	110% 60 s, 120% 3 s	s (inverse-time charac	teristics) at surround	ing air temperature of	40°C					
O Overload current	LD	120% 60 s, 150% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C									
rating *3	ND (initial setting)	150% 60 s, 200% 3 s	s (inverse-time charac	teristics) at surround	ing air temperature of	50°C					
	HD	200% 60 s, 250% 3 s	s (inverse-time charac	teristics) at surround	ing air temperature of	50°C					
Rated voltage *4		Three-phase 380 to 500 V									
Regenerative braking torque *5 (When the converte unit (FR-CC2) is used)	r Maximum brake torque	10% torque/continuo	us								
र्ভ DC power supply vo	oltage	430 to 780 VDC									
DC power supply vo	ly auxiliary input	Single phase 380 to	500 V 50 Hz/60 Hz *7								
	power supply auxiliary	Frequency ±5%, volt	age ±10%								
Protective structure (IEC	60529) *6	Open type (IP00)									
Cooling system		Forced air cooling									
Approx. mass (kg)		163	163	243	243	243					

*2 The rated output capacity indicated assumes that the output voltage is 440 V.

The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load. *3

*4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$.

*5 ND rating reference value

FR-DU08: IP40 (except for the PU connector section) For the power voltage exceeding 480 V, set **Pr.977 Input voltage mode selection**. *6 *7

Converter unit (FR-CC2)

	Model FR-CC2-H[]	315K	355K	400K	450K	500K	560K	630K					
Ap	plicable motor capacity (kW)	315	355	400	450	500	560	630					
Output	Overload current rating *1	200% 60 s, 2	250% 3 s	·	·	150% 60 s, 200% 3 s	120% 60 s, 150% 3 s	110% 60 s, 120% 3 s					
ō	Rated voltage *2	430 to 780 V	DC *4										
≥	Rated input AC voltage/frequency	Three-phase	380 to 500 V 5	50 Hz/60 Hz									
supply	Permissible AC voltage fluctuation	Three-phase 323 to 550 V 50 Hz/60 Hz											
ir SL	Permissible frequency fluctuation	±5%											
ower	Rated input current (A)	610	683	770	866	962	1094	1212					
ŭ	Power supply capacity (kVA) *3	465	521	587	660	733	833	924					
Pr	otective structure (IEC 60529)	Open type (I	P00)		•	·	•	•					
Сс	ooling system	Forced air co	oling										
DC	C reactor	Built-in											
Ap	prox. mass (kg)	210	213	282	285	288	293	294					

*1 The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the converter unit and the inverter to return to or below the temperatures under 100% load.

The converter unit output voltage varies according to the input power supply voltage and the load. The maximum point of the voltage waveform at the *2

converter unit output side is approximately the power supply voltage multiplied by $\sqrt{2}$. The power supply capacity is the value when at the rated output current. It varies by the impedance at the power supply side (including those of the input *3 reactor and cables).

*4 The permissible voltage imbalance ratio is 3% or less. (Imbalance ratio = (highest voltage between lines - average voltage between three lines) / average voltage between three lines \times 100)

400 V class (parallel operation function compatible model)

Inverter

				Two in parall	el		Three in para	llel				
	Model FR-A842-[]	-P	400K	450K	500K	400K	450K	500K				
			09620	10940	12120	09620	10940	12120				
An	blicable motor capacity (kW)	LD	710	800	900	1065	1200	1350				
ĀΡ		ND (initial setting)	630	710	800	945	1065	1200				
	Rated capacity (kVA) *1	LD	1056	1173	1334	1584	1759	2002				
	Rated capacity (KVA) *1	ND (initial setting)	939	1056	1173	1409	1584	1759				
	Rated current (A) *2	LD	1386	1539	1750	2078	2309	2626				
÷	Rated current (A) *2	ND (initial setting)	1232	1386	1539	1848	2078	2309				
Output	Overload current rating *3	LD	120% 60 s, 15	50% 3 s (invers	e-time character	istics) at surrou	nding air tempe	rature of 50°C				
õ	Overload current fating *3	ND (initial setting)	150% 60 s, 20	0% 3 s (inverse	e-time character	istics) at surrou	nding air tempe	erature of 50°C				
	Rated voltage *4	Three-phase 3	380 to 500 V									
	Regenerative braking torque *5 (When the converter unit is used)	10% torque/co	10% torque/continuous									
ver	DC power supply voltage		430 to 780 VD	C								
Input power	Control power supply auxiliary input		Single phase 380 to 500 V 50/60 Hz *6									
Inpl	Permissible control power supply au	xiliary input fluctuation	Frequency ±5%, voltage ±10%									
Pro	tective structure (IEC 60529) *7		Open type (IP	00)								
Co	oling system		Forced air coo	oling								
Ap	prox. mass (kg) *8		486	486	486	729	729	729				

The rated output capacity indicated assumes that the output voltage is 440 V. *1

Total output current of the inverters operated in parallel. *2

The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load. *3

The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, *4 the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$.

*5 ND rating reference value.

*6 For the power voltage exceeding 480 V, set Pr.977 Input voltage mode selection

FR-DU08: IP40 (except for the PU connector section) Total mass of the inverters operated in parallel. *7

*8

· Converter unit (FR-CC2)

	Model FR-CC2-H[]-P		Two i	in parallel			Three in parallel							
	Model FR-CC2-HU-F	400K	450K	500K	560K	400K	450K	500K	560K					
Ap	plicable motor capacity (kW)	630	710	800	900	945	1065	1200	1350					
put	Overload current rating *1 Rated voltage *2	150% 60 s,	200% 3 s											
		430 to 780 \	/DC *3											
У	Rated input AC voltage/frequency Permissible AC voltage fluctuation Permissible frequency fluctuation Rated input current (A) *4 Power supply capacity (kVA) *5	Three-phase 380 to 500 V 50/60 Hz												
lddr	Permissible AC voltage fluctuation	Three-phase 323 to 550 V 50/60 Hz												
ir su	Permissible frequency fluctuation	±5%												
owe	Rated input current (A) *4	1232	1386	1539	1750	1848	2078	2309	2626					
ď	Power supply capacity (kVA) *5	939	1056	1173	1334	1409	1584	1759	2002					
Pro	otective structure (IEC 60529)	Open type (IP00)		-		-							
Со	oling system	Forced air c	ooling											
DC	C reactor	Built-in												
Ap	prox. mass (kg) *6	564	570	576	586	846	855	864	879					

*1 The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the converter unit and the inverter to return to or below the temperatures under 100% load.

The converter unit output voltage varies according to the input power supply voltage and the load. The maximum point of the voltage waveform at the *2

converter unit output side is approximately the power supply voltage multiplied by $\sqrt{2}$. The permissible voltage imbalance ratio is 3% or less. (Imbalance ratio = (highest voltage between lines - average voltage between three lines) / average *3 voltage between three lines \times 100)

*4

The input current is the total current of the master and slave converter units during the parallel operation. The power supply capacity is the value when at the rated output current. It varies by the impedance at the power supply side (including those of the input *5 reactor and cables)

The mass is the total mass of the master and slave converter units during the parallel operation. *6

• Rating (IP55 compatible model)

400 V class

Model ED A846 [1(E)		00023	00038	00052	00083	00126	00170	00250	00310	00380	00470	00620	00770	00930	01160	01800	02160	02600	03250	03610	
	Model FR-A846-[](-E)			0.75K	1.5K	2.2K	3.7K	5.5K	7.5K	11K	15K	18.5K	22K	30K	37K	45K	55K	75K	90K	110K	132K
Applicable		LD	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160
	otor capacity V) *1	ND (initial setting)	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132
	Rated	LD	1.6	2.7	3.7	5.8	8.8	12	18	22	27	33	43	53	65	81	110	137	165	198	248
	capacity (kVA) *2	ND (initial setting)	1.1	1.9	3	4.6	6.9	9.1	13	18	24	29	34	43	54	66	84	110	137	165	198
	Rated	LD	2.1	3.5	4.8	7.6	11.5	16	23	29	35	43	57	70	85	106	144	180	216	260	325
Ŧ	current (A)	ND (initial setting)	1.5	2.5	4	6	9	12	17	23	31	38	44	57	71	86	110	144	180	216	260
Output	Overload	LD	120%	60 s,	150%	3 s (i	nverse	e-time	chara	cteris	tics) a	t surrc	oundin	g air t	emper	ature	of 40°	С			
0	current rating *3	ND (initial setting)	150%	60 s,	200%	o 3 s (i	nverse	e-time	chara	cteris	tics) a	t surrc	oundin	g air t	emper	ature	of 40°	С			
	Rated voltage	e *4	Three	-phas	e 380	to 500) V														
	Regenerative braking		10% t	orque	/contir	nuous															
	Rated input AC voltage/frequency		Three-phase 380 to 500 V 50 Hz/60 Hz *8																		
	Permissible A fluctuation	C voltage	323 to	323 to 550 V 50 Hz/60 Hz																	
supply	Permissible fi fluctuation	ssible frequency ation																			
	Rated input	LD	2.1	3.5	4.8	7.6	11.5	16	23	29	35	43	57	70	85	106	144	180	216	260	325
Power	current (A) *6	ND (initial setting)	1.5	2.5	4	6	9	12	17	23	31	38	44	57	71	86	110	144	180	216	260
	Power supply	LD	1.6	2.7	3.7	5.8	9	12	18	22	27	33	43	53	65	81	110	137	165	198	248
	capacity (kVA) *7	ND (initial setting)	1.1	1.9	3	4.6	6.9	9	13	18	24	29	34	43	54	66	102	110	137	165	198
Pro	Protective IEC 60529		Dust-	and w	/ater-p	proof t	ype (II	P55) *	10												
str	ucture	UL50	UL Ty	pe12	*9																
Co	oling system		Self c	ooling	+ inte	ernal fa	an		Force	d-air-	coolin	g + int	ernal	fan							
DC	c reactor		Built-i	n																	
Ap	prox. mass (k	g)	15	15	15	15	16	17	26	26	27	27	59	60	63	64	147	150	153	189	193

*1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard motor.

*2 The rated output capacity indicated assumes that the output voltage is 440 V.

*3 The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load.

*4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$.

*5 Value for the ND rating.

*6 The rated input current indicates a value at a rated output voltage. The impedance at the power supply side (including those of the input reactor and cables) affects the rated input current.

*7 The power supply capacity is the value when at the rated output current. It varies by the impedance at the power supply side (including those of the input reactor and cables).

*8 For the power voltage exceeding 480 V, set Pr.977 Input voltage mode selection.

*9 UL Type 12 Enclosure-Suitable for Installation in a Compartment Handling Conditioned Air (Plenum)

*10 For compliance with IP55, remove the protective bushes and install the recommended cable glands.

Common specifications (Standard type)

	Co	ntrol met	hod	Soft-PWM control, high carrier frequency PWM control (selectable among V/F control, Advanced magnetic flux vector control, Real sensorless vector control, Optimum excitation control), vector control•1, and PM sensorless vector control					
	Out	tput freq	uency range	0.2 to 590 Hz (The upper-limit frequency is 400 Hz under Advanced magnetic flux vector control, Real sensorless vector control, vector control-1, and PM sensorless vector control.)					
	set	quency ting olution	Analog input	0.015 Hz/60 Hz (0 to 10 V/12 bits for terminals 2 and 4) 0.03 Hz/60 Hz (0 to 5 V/11 bits or 0 to 20 mA/approx. 11 bits for terminals 2 and 4, 0 to \pm 10 V/12 bits for terminal 1) 0.06 Hz/60 Hz (0 to \pm 5 V/11 bits for terminal 1)					
	100	oration	Digital input	0.01 Hz					
Suc		quency	Analog input	Within ±0.2% of the max. output frequency (25°C ± 10°C)					
atic		uracy	Digital input	Within 0.01% of the set output frequency					
Control specifications		tage/freq tracterist		Base frequency can be set from 0 to 590 Hz. Constant-torque/variable-torque pattern or adjustable 5 points V/F can be selected.					
rol sı	Sta	rting tor	que *2	SLD Rating:120% 0.3 Hz, LD Rating:150% 0.3 Hz, ND Rating:200% 0.3 Hz*3, HD Rating:250% 0.3 Hz*3 (Real sensorless vector control, vector control*1)					
b T	Tor	que boo	st	Manual torque boost					
Ŭ		celeration e setting	n/deceleration	0 to 3600 s (acceleration and deceleration can be set individually), linear or S-pattern acceleration/deceleration mode, backlash countermeasures acceleration/deceleration can be selected.					
		injectior duction n		Operation frequency (0 to 120 Hz), operation time (0 to 10 s), operation voltage (0 to 30%) variable					
		II preven eration le		Activation range of stall prevention operation (SLD rating: 0 to 120%, LD rating: 0 to 150%, ND rating: 0 to 220%, HD rating: 0 to 280%). Whether to use the stall prevention or not can be selected. (V/F control, Advanced magnetic flux vector control)					
	Tor	que limit	level	Torque limit value can be set (0 to 400% variable). (Real sensorless vector control, vector control _{*1} , PM sensorless vector control)					
		quency ting	Analog input	Terminals 2 and 4: 0 to 10 V, 0 to 5 V, 4 to 20 mA (0 to 20 mA) are available. Terminal 1: -10 to +10 V, -5 to +5 V are available.					
	setting signal Digital input		Digital input	Input using the setting dial of the operation panel or parameter unit Four-digit BCD or 16-bit binary (when used with option FR-A8AX)					
	Sta	rt signal		Forward and reverse rotation or start signal automatic self-holding input (3-wire input) can be selected.					
IS	Input signals (twelve terminals)			Low-speed operation command, Middle-speed operation command, High-speed operation command, Second function selection, Terminal 4 input selection, Jog operation selection, Selection of automatic restart after instantaneous power failure, flying start, Output stop, Start self-holding selection, Forward rotation command, Reverse rotation command, Inverter reset The input signal can be changed using Pr.178 to Pr.189 (input terminal function selection) .					
atio	Γ	Pulse tra	ain input	100k pulses/s					
Operation specifications	Op	Operational functions		Maximum and minimum frequency settings, multi-speed operation, acceleration/deceleration pattern, thermal protection, DC injection brake, starting frequency, JOG operation, output stop (MRS), stall prevention, regeneration avoidance, increased magnetic excitation deceleration, DC feeding+4, frequency jump, rotation display, automatic restart after instantaneous power failure, electronic bypass sequence, remote setting, automatic acceleration/deceleration, retry function, carrier frequency selection, fast-response current limit, forward/reverse rotation prevention, operation mode selection, slip compensation, droop control, load torque high-speed frequency control, speed smoothing control, traverse, auto tuning, applied motor selection, gain tuning, RS-485 communication, Ethernet communication+10, PID control, PID pre-charge function, easy dancer control, cooling fan operation selection, stop selection (deceleration stop/coasting), power-failure deceleration stop function, stop-on-contact control, PIC function, life diagnosis, maintenance timer, current average monitor, multiple rating, orientation control+1, speed control, torque control, position control, pre-excitation, torque limit, test run, 24 V power supply input for control control step ysop function, anti-sway control					
	signa			Inverter running, Up to frequency, Instantaneous power failure/undervoltage, Overload warning, Output frequency detection, Fault The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection) . Fault codes of the inverter can be output (4 bits) from the open collector.					
	_	년 (two terminals) 역 Pulse train output 이 (FM type)		50k pulses/s					
		Pulse	rrain output FM type)	Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection.					
E	r meter	Cur	rent output CA type)	Max. 20 mADC: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection.					
Indication	For	Volt	age output	Max. 10 VDC: one terminal (output frequency) The monitored item can be changed using Pr.158 AM terminal function selection.					
lnc		eration	Operating status	Output frequency, Output current, Output voltage, Frequency setting value The monitored item can be changed using Pr.52 Operation panel main monitor selection .					
		oanel R-DU08)	Fault record	A fault record is displayed when a fault occurs. Past 8 fault records and the conditions immediately before the fault (output voltage/current/frequency/cumulative energization time/year/month/date/time) are saved.					
Protective/ warning function		Protective function ctive/ ning		Overcurrent trip during acceleration, Overcurrent trip during constant speed, Overcurrent trip during deceleration or stop, Regenerative overvoltage trip during acceleration, Regenerative overvoltage trip during constant speed, Regenerative overvoltage trip during deceleration or stop, Inverter overload trip, Motor overload trip, Heat sink overheat, Instantaneous power failure*4, Undervoltage*4, Input phase loss*4*5, Stall prevention stop, Loss of synchronism detections*0, Upper limit fault detection, Lower limit fault detection, Brake transistor alarm detection*6, Output side earth (ground) fault overcurrent, Output short circuit, Output phase loss, External thermal relay operation*5, PTC thermistor operation*5, Option fault, Communication option fault, Parameter storage device fault (control board), PU disconnection, Retry count excess*5, CPU fault, Operation panel power supply short circuit/RS-485 terminals power supply short circuit, 24 VDC power fault, Abnormal output current detection*5, Inrush current limit circuit fault*4, Communication fault, Analog input fault, USB communication fault, Safety circuit fault, Overspeed occurrence*5, Speed deviation excess detection*15, Signal loss detection*15, Excessive position fault*15, Brake sequence fault*5, Encoder phase fault*15, 4 mA input fault*5, Pre-charge fault*5, PID signal fault*5, Opposite rotation deceleration fault*5, Internal circuit fault, Abnormal internal temperature*7, Magnetic pole position unknown*1					
			Warning function	Fan alarm, Stall prevention (overcurrent), Stall prevention (overvoltage), Regenerative brake pre-alarm-5*6, Electronic thermal relay function pre-alarm, PU stop, Speed limit indication+5, Parameter copy, Safety stop, Maintenance signal output+5, USB host error, Home position return setting error+5, Home position return uncompleted+5, Home position return parameter setting error+5, Operation panel lock+5, Password locked+5, Parameter write error, Copy operation error, 24 V external power supply operation, Internal fan alarm+7, Continuous operation during communication fault+5, Load fault warning, Ethernet communication fault+10					

38

	Surrounding air temperature	-10°C to +50°C (0°C to +50°C for the FR-A800-GF) (non-freezing) (LD, ND, HD ratings) -10°C to +40°C (0°C to +40°C for the FR-A800-GF) (non-freezing) (SLD rating, IP55 compatible model)
onment	Surrounding air humidity	95% RH or less (non-condensing) (With circuit board coating (conforming to IEC60721-3-3 3C2/3S2), IP55 compatible model) 90% RH or less (non-condensing) (Without circuit board coating)
vir	Storage temperature *8	-20°C to +65°C
E	Atmosphere	Indoors (without corrosive gas, flammable gas, oil mist, dust and dirt, etc.)
	Altitude/vibration	2500 m or less (For the installation at an altitude above 1000 m, consider a 3% reduction in the rated current per 500 m increase in altitude.), 5.9 m/s ² *9 or less at 10 to 55 Hz (directions of X, Y, Z axes)

Available only when a vector control compatible option is installed. (The protective function may or may not be available depending on the type of the *1 connected communication option.)

*2

For PM sensorless vector control, refer to **page 243**. In the initial setting of the FR-A820-00340(5.5K) or higher and the FR-A840-00170(5.5K) or higher, it is limited to 150% by the torque limit level. Enabled only for standard models and IP55 compatible models. *3 *4 *5 *6 *7

Available for the IP55 compatible model only. Available for the IP55 compatible model only. *8

2.9 m/s² or less for the FR-A840-04320(160K) or higher. *9

*10 Available for the FR-A800-E only.

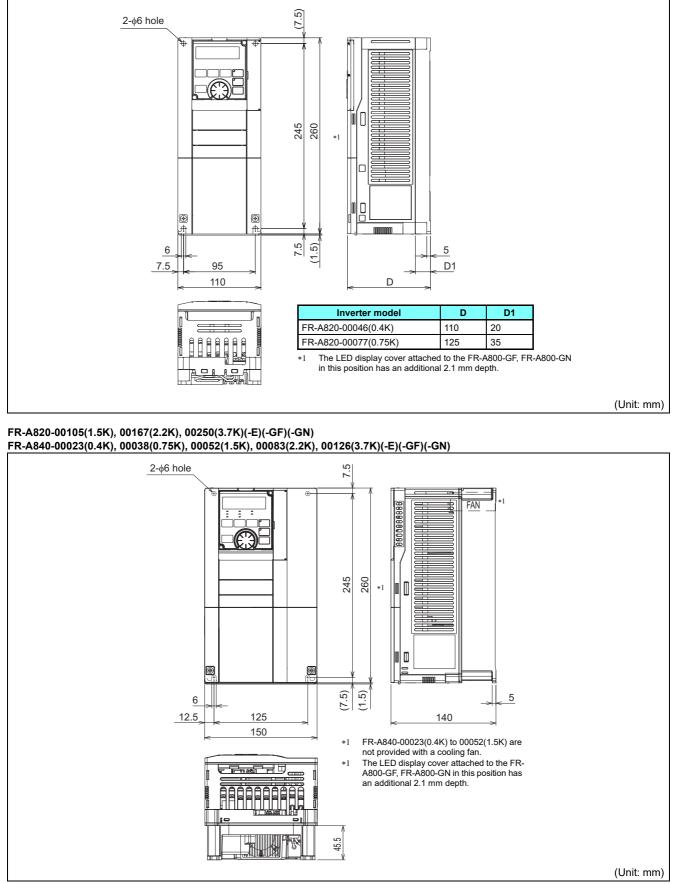
PLC function specifications

Control method			A800 PLC function specifications			
Control method	d		Repeated operation (by stored program)			
I/O control mod	de		Refresh			
Programming I	language		Relay symbolic language (ladder) Function block			
	Sequence instru	uctions	25			
No. of instructions	Basic instruction	าร	84			
monuclions	Application instr	uctions	37			
Processing spe	eed		Sequence instructions 1.9 µs to 12 µs/step∗1			
Number of I/O	device points		128 (input: 64 points, output: 64 points) 19 points built-in (input: 12 points, output: 7 points)*2 FR-A8AX (input: 16 points) FR-A8AY (output: 7 points) FR-A8AR (output: 3 points)			
Number of ana	alog I/O points		3 input points built-in (Terminals 1, 2, and 4), FR-A8AZ: 1 input point (Terminal 6) 2 output points built-in (Terminals F/C(FM/CA) and AM), FR-A8AY: 2 output points (Terminals AM0 and AM1), FR-A8AZ: 1 output point (Terminal DA1)			
Pulse train I/O		Input	Terminal JOG maximum input pulse: 100k pulses/s *3			
		Output	Terminal FM maximum output pulse: 50k pulses/s *3			
Watchdog time	er		10 to 2000 ms			
Program capad	city		6K steps (24k bytes) (0 to 6144 steps can be set) Contained in one program			
	Internal relay (N	1)	128 (M0 to M127)			
	Latch relay (L)		Not used (Can be set with parameters but will not latch)*4			
		Number of points	16 (T0 to T15)			
	Timer (T)	Specifications	100 ms timer: 0.1 to 3276.7 s can be set 10 ms timer: 0.01 to 327.67 s can be set			
	Retentive	Number of points	0 (up to 16 by parameter assignment)			
Device	timer (ST)	Specifications	100 ms retentive timer: 0.1 to 3276.7 s can be set 10 ms retentive timer: 0.01 to 327.67 s can be set			
		Number of points	16 (C0 to C15)			
	Counter (C)	Specifications	Normal counter: Setting range 1 to 32767 Interrupt program counter: Not used			
	Data register (D)	256 (D0 to D255)			
	Special relay (S	M)	2048 (SM0 to SM2047) with limited functions			
1	Special register	(SD)	2048 (SD0 to SD2047) with limited functions			

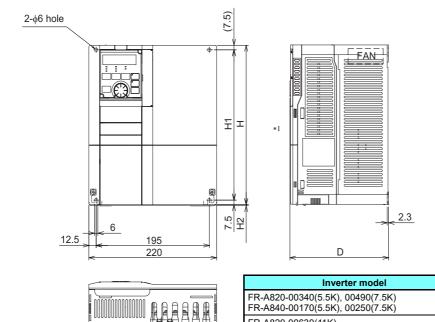
The scan time is approximately 40 ms for 1K steps as inverter control is also performed in actual operations. *1

The signals same as the ones assigned to the inverter I/O terminals are used. One point is always required for a sequence start (RUN/STOP). Pr.291 Pulse train I/O selection must be set. *2

*3 *4


There is no device latch function for power failures. Use the **Pr.1150 to Pr.1199 PLC function user parameters 1 to 50** (D206 to D255) to store device values in the EEPROM.

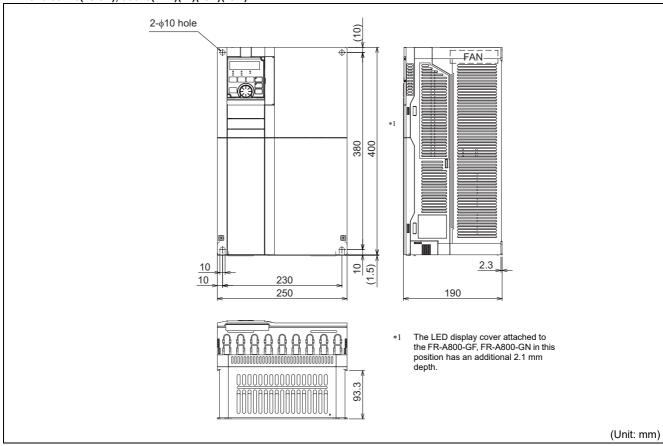
There is no buffer memory.


Standard model

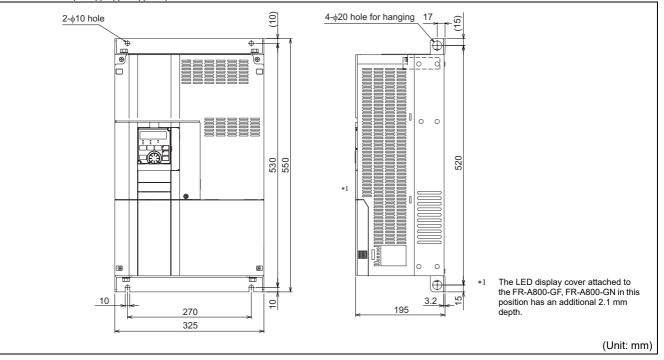
FR-A820-00046(0.4K), FR-A820-00077(0.75K)(-E)(-GF)(-GN)

5

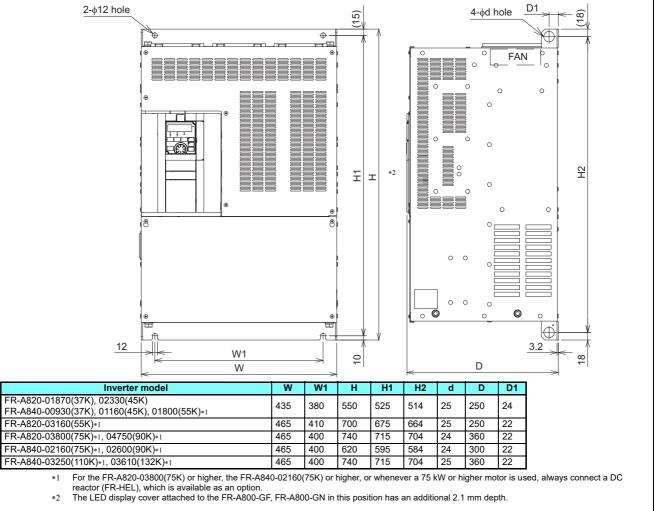
FR-A820-00340(5.5K), 00490(7.5K), 00630(11K)(-E)(-GF)(-GN) FR-A840-00170(5.5K), 00250(7.5K), 00310(11K), 00380(15K)(-E)(-GF)(-GN)


5

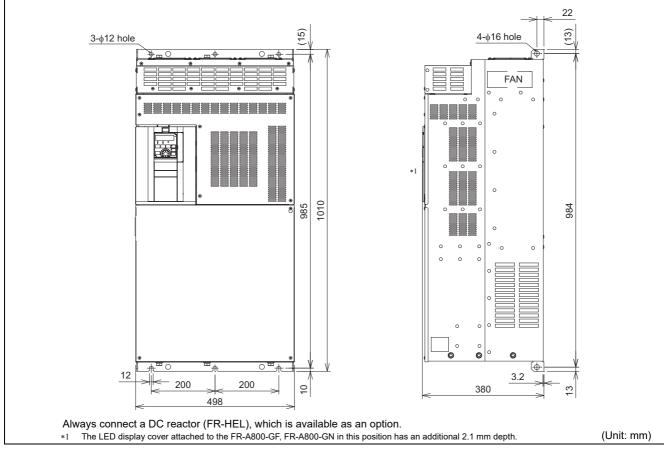
	Inverter model	н	H1	H2	D	D1
	FR-A820-00340(5.5K), 00490(7.5K) FR-A840-00170(5.5K), 00250(7.5K)	260	245	1.5	170	84
-	FR-A820-00630(11K) FR-A840-00310(11K), 00380(15K)	300	285	3	190	101.5
	*1 The LED display cover attached to the FR-A800-GF.	. FR-A8	0-GN in	this pos	ition has	an


The LED display cover attached to the FR-A800-GF, FR-A800-GN in this position has an additional 2.1 mm depth.

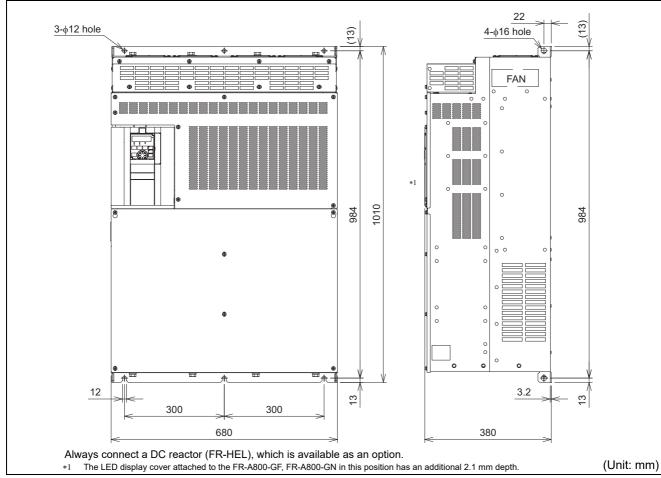
(Unit: mm)


FR-A820-00770(15K), 00930(18.5K), 01250(22K)(-E)(-GF)(-GN) FR-A840-00470(18.5K), 00620(22K)(-E)(-GF)(-GN)

FR-A820-01540(30K)(-E)(-GF)(-GN) FR-A840-00770(30K)(-E)(-GF)(-GN)

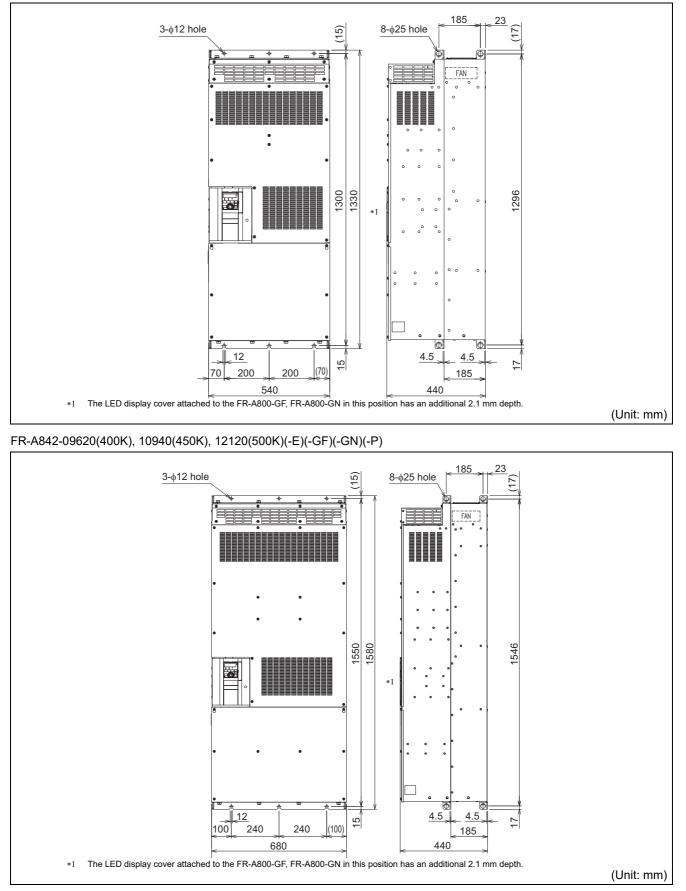


FR-A820-01870(37K), 02330(45K), 03160(55K), 03800(75K), 04750(90K)(-E)(-GF)(-GN) FR-A840-00930(37K), 01160(45K), 01800(55K), 02160(75K), 02600(90K), 03250(110K), 03610(132K)(-E)(-GF)(-GN)



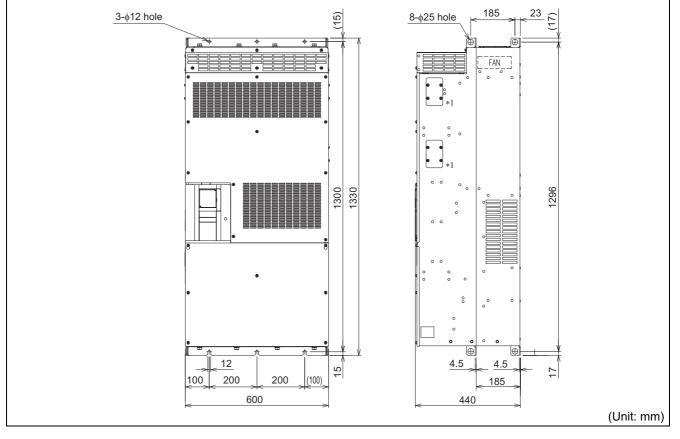
42

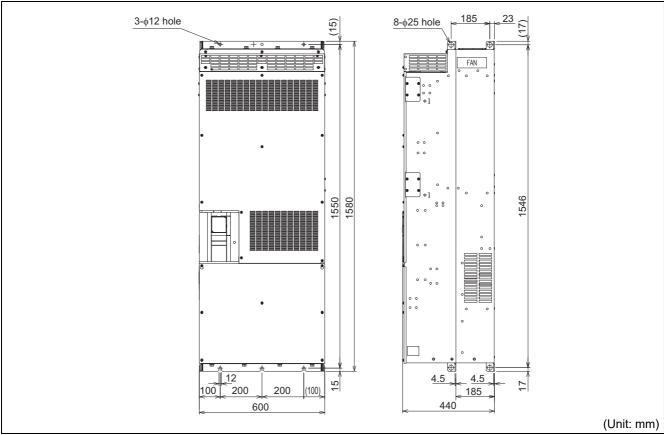
FR-A840-04320(160K), 04810(185K)(-E)(-GF)(-GN)


FR-A840-05470(220K), 06100(250K), 06830(280K)(-E)(-GF)(-GN)

• Separated converter type

Inverter

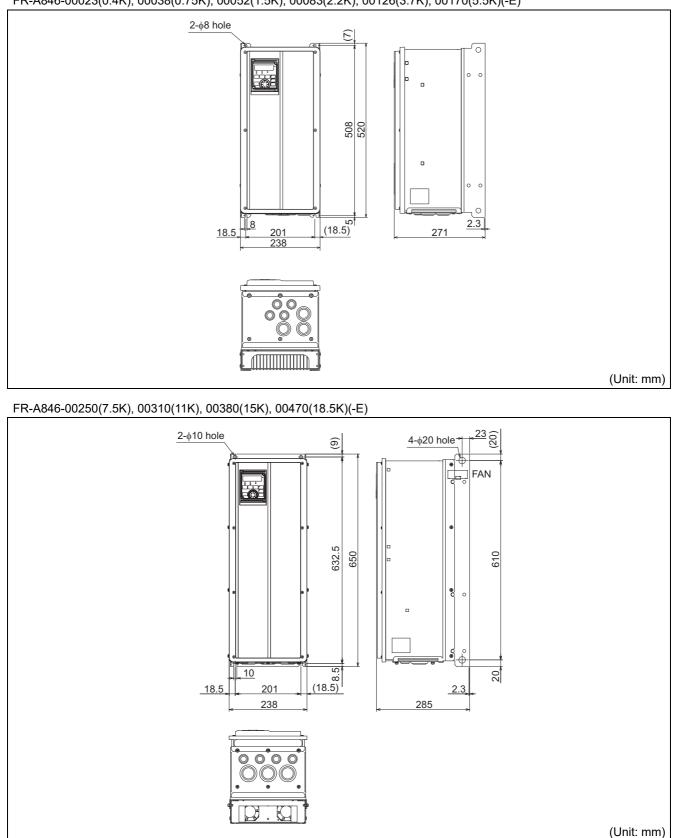

FR-A842-07700(315K), 08660(355K)(-E)(-GF)(-GN)

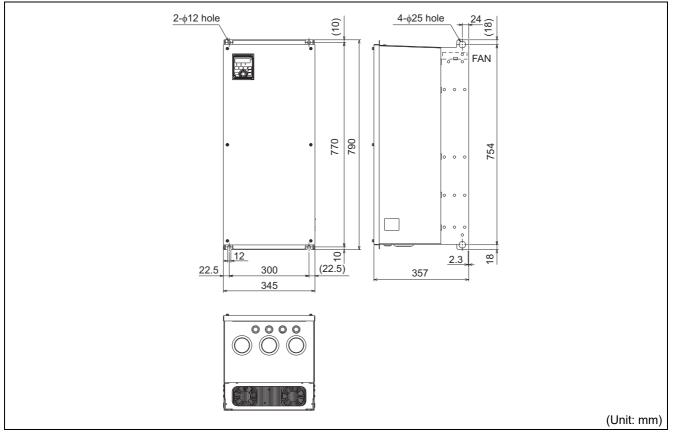

Converter unit

Equipped with a DC reactor.

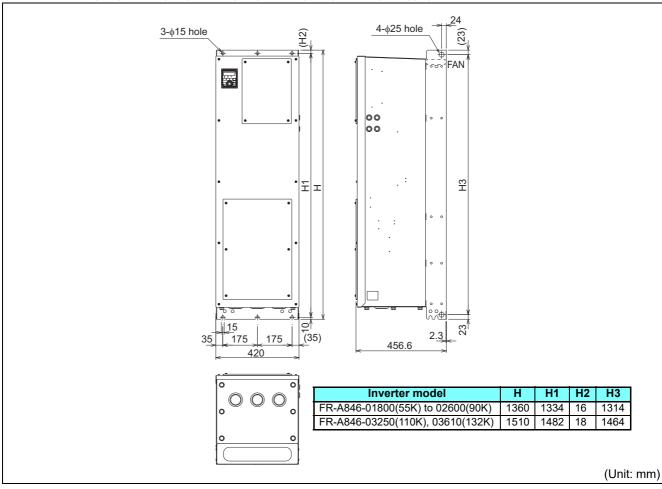
FR-CC2-H315K, H355K

FR-CC2-H400K(-P), H450K(-P), H500K(-P), H560K(-P), H630K

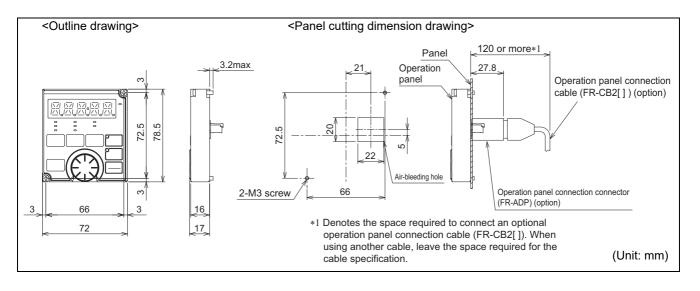



 $\ast 1$ $\;$ Do not remove the cover on the side of the converter unit.

• IP55 compatible model

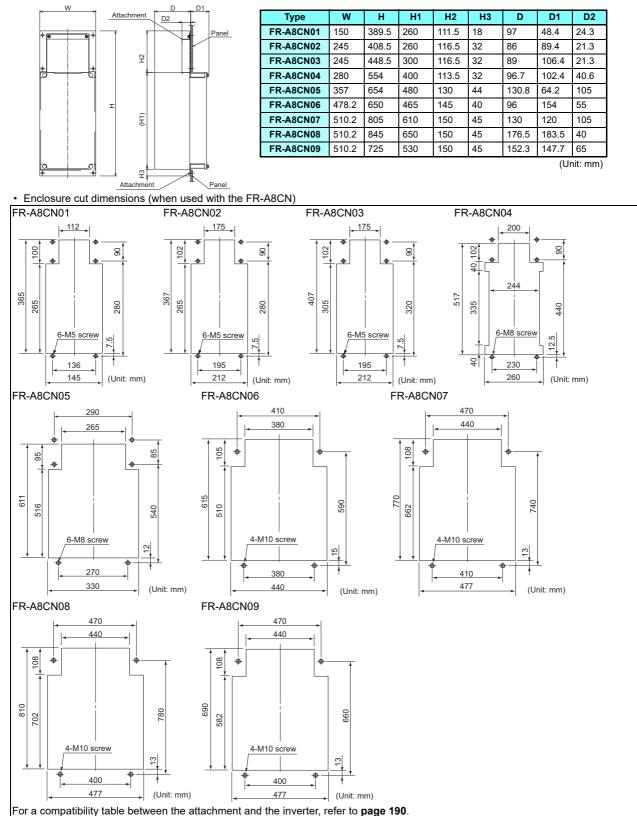

Equipped with a DC reactor.

FR-A846-00023(0.4K), 00038(0.75K), 00052(1.5K), 00083(2.2K), 00126(3.7K), 00170(5.5K)(-E)



FR-A846-01800(55K), 02160(75K), 02600(90K), 03250(110K), 03610(132K)(-E)

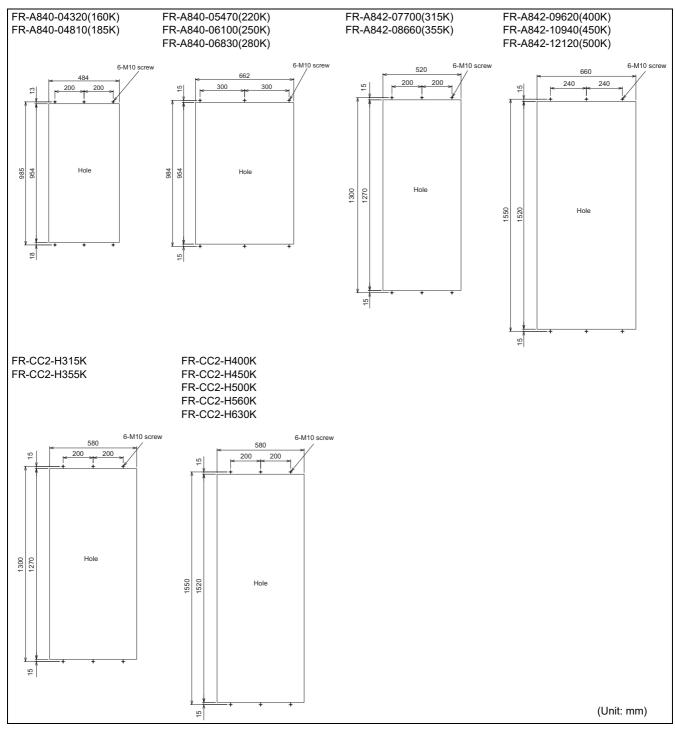
• Operation panel (FR-DU08, FR-LU08)


Protruding the heat sink through the panel

When encasing the inverter or the converter unit in an enclosure, the heat generated in the enclosure can be greatly reduced by protruding the heat sink of the inverter or the converter unit. When installing the inverter in a compact enclosure, etc., this installation method is recommended. For the FR-A840-04320(160K) or higher, a heat sink can be protruded outside the enclosure without using an attachment.

When using a panel through attachment (FR-A8CN)

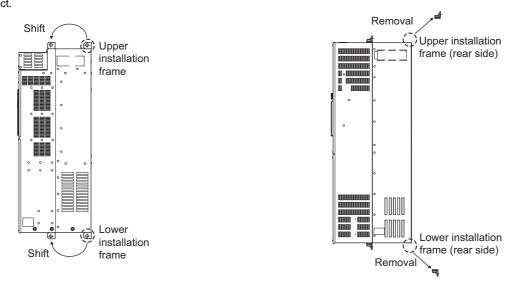
For the FR-A820-00105(1.5K) to FR-A820-04750(90K) and FR-A840-00023(0.4K) to FR-A840-03610(132K), a heat sink can be protruded outside the enclosure using a panel through attachment (FR-A8CN). Refer to the Instruction Manual of the panel through attachment (FR-A8CN) for details.


• Drawing after attachment installation (when used with the FR-A8CN)

♦ Heat sink protrusion through the panel for the FR-A840-04320(160K) or higher

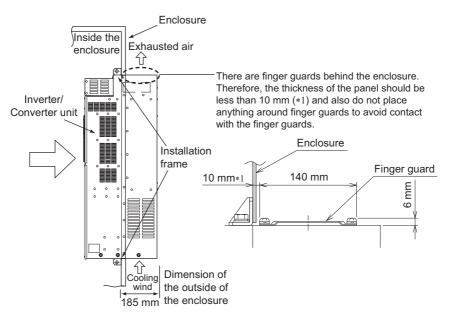
Enclosure cutting

Cut an enclosure according to the capacity of the inverter or the converter unit.


Shift and removal of a rear side installation frame

For the FR-A840-04320(160K) to FR-A840-06830(280K)

One installation frame is attached to each of the upper and lower parts of the inverter. Change the position of the rear side installation frame on the upper and lower sides of the inverter to the front side as shown below. When changing the installation frames, make sure that the installation orientation is correct.


For the FR-A842-07700(315K) to FR-A842-12120(500K), FR-CC2-H315K to FR-CC2-H630K

Two installation frames are attached to each of the upper and lower parts of the inverter or the converter unit. Remove the rear side installation frame on the upper and lower sides of the inverter or the converter unit as shown below.

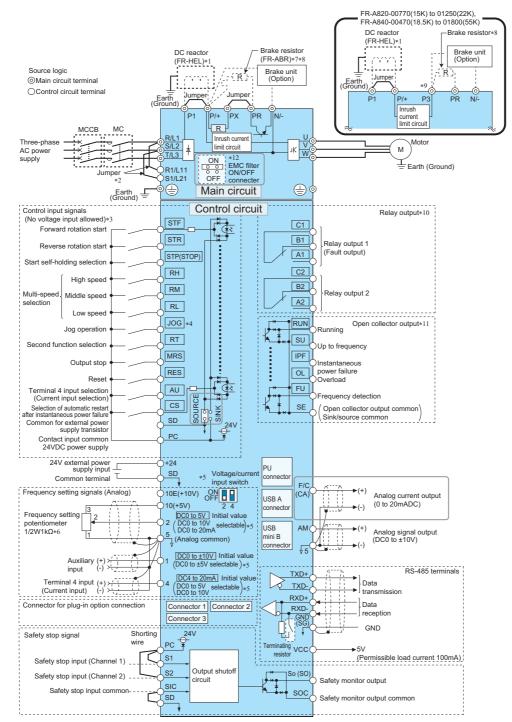
· Installation of the inverter or the converter unit

Push the inverter heat sink portion outside the enclosure and fix the enclosure and the inverter or the converter unit with upper and lower installation frame.



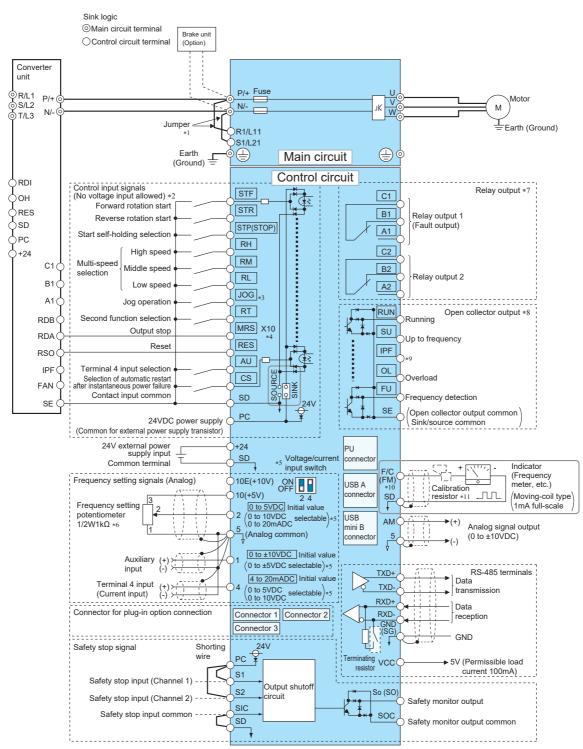
NOTE :

- Having a cooling fan, the cooling section which comes out of the enclosure cannot be used in the environment of water drops, oil, mist, dust, etc.
- · Be careful not to drop screws, dust etc. into the inverter or the converter unit and the cooling fan section.
- The FR-A7CN panel through attachment cannot be installed on the FR-A800 series.


Standard models and IP55 compatible models

+ FM type

For the FR-A820-03800(75K) or higher, the FR-A840-02160(75K) or higher, and when a 75 kW or higher motor is used, always connect a DC reactor (FR-*1 HEL), which is available as an option. (To select a DC reactor, refer to page 33, page 223, and select one according to the applicable motor capacity.) When connecting a DC reactor, if a jumper is installed across terminals P1 and P/+, remove the jumper before installing the DC reactor. The IP55 compatible model has a built-in DC reactor. (The jumper is not installed for the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher.)


- When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21. IP55 compatible models do not have terminals *2 R1/L11, S1/L21, and jumpers.
- *3 The function of these terminals can be changed with the input terminal assignment (Pr.178 to Pr.189). (Refer to page 146.)
- Terminal JOG is also used as a pulse train input terminal. Use Pr.291 to choose JOG or pulse *4
- *5 Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input a voltage, set the voltage/current input
- switch OFF. To input a current, set the voltage/current input switch ON. (Refer to page 132.) *6
 - It is recommended to use 2 W 1 kΩ when the frequency setting signal is changed frequently. If connecting a brake resistor, remove the jumper between PR and PX (FR-A820-00046(0.4K) to 00490(7.5K), FR-A840-00023(0.4K) to 00250(7.5K)).
- *8 Connect a brake resistor across terminals P/+ (P3) and PR. (Terminal PR is equipped in FR-A820-00046(0.4K) to 01250(22K), FR-A840-00023(0.4K) to 01800(55K).) Install a thermal relay to prevent overheating and damage of discharging resistors.
- Do not connect the DC power supply (under DC feeding mode) to terminal P3. *9
- *10 The function of these terminals can be changed with the output terminal assignment (Pr.195, Pr.196). (Refer to page 147.)
- The function of these terminals can be changed with the output terminal assignment (**Pr.190** to **Pr.194**). (Refer to **page 147**.) Terminal F/C (FM) can be used to output pulse trains as open collector output by setting **Pr.291**. *11
- *12
- *13 Not required when calibrating the scale with the operation panel.
- Do not change the initially set ON (enabled) position of the EMC filter ON/OFF connector in the case of the inverter with a built-in C2 filter (IP55 compatible *14 model). The Class C2 compatibility condition is not satisfied with the EMC filter OFF. The FR-A846-00250(7.5K)-C2 to FR-A846-00470(18.5K)-C2 are not provided with the EMC filter ON/OFF connector. The EMC filter is always ON.

- For the FR-A820-03800(75K) or higher, the FR-A840-02160(75K) or higher, and when a 75 kW or higher motor is used, always connect a DC reactor (FR-*1 HEL), which is available as an option. (To select a DC reactor, refer to **page 33**, **page 223**, and select one according to the applicable motor capacity.) When connecting a DC reactor, if a jumper is installed across terminals P1 and P/+, remove the jumper before installing the DC reactor. The IP55 compatible model has a built-in DC reactor. (The jumper is not installed for the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher.)
- *2 When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21. IP55 compatible models do not have terminals R1/L11, S1/L21, and jumpers
- The function of these terminals can be changed with the input terminal assignment (Pr.178 to Pr.189). (Refer to page 146.) *3
- Terminal JOG is also used as a pulse train input terminal. Use Pr.291 to choose JOG or pulse *4 Terminal input specifications can be changed by analog input specification switchover (**Pr.73**, **Pr.267**). To input a voltage, set the voltage/current input switch OFF. To input a current, set the voltage/current input switch ON. (Refer to **page 132**.) It is recommended to use 2 W 1 k Ω when the frequency setting signal is changed frequently. *5
- *6
- *7
- If connecting a brake resistor, remove the jumper between PR and PX (FR-A820-00046(0.4K) to 00490(7.5K), FR-A840-00023(0.4K) to 00250(7.5K)). Connect a brake resistor across terminals P/+ (P3) and PR. (Terminal PR is equipped in FR-A820-00046(0.4K) to 01250(22K), FR-A840-00023(0.4K) to 01800(55K).) Install a thermal relay to prevent overheating and damage of discharging resistors. *8
- Do not connect the DC power supply (under DC feeding mode) to terminal P3. ×0
- *10
- The function of these terminals can be changed with the output terminal assignment (**Pr.195**, **Pr.196**). (Refer to **page 147**.) The function of these terminals can be changed with the output terminal assignment (**Pr.190** to **Pr.194**). (Refer to **page 147**.) *11
- Do not change the initially set ON (enabled) position of the EMC filter ON/OFF connector in the case of the inverter with a built-in C2 filter (IP55 compatible *12 model). The Class C2 compatibility condition is not satisfied with the EMC filter OFF. The FR-A846-00250(7.5K)-C2 to FR-A846-00470(18.5K)-C2 are not provided with the EMC filter ON/OFF connector. The EMC filter is always ON.

Separated converter type

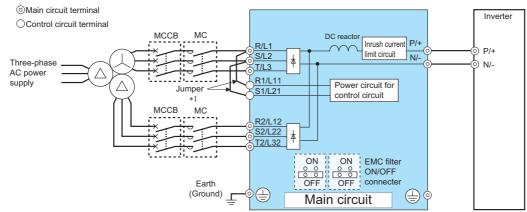
+ FM type

*1 Terminals R1/L11 and S1/L21 are connected to terminals P/+ and N/- with a jumper respectively. When using separate power supply for the control circuit, remove the jumpers from R1/L11 and S1/L21.

*2 The function of these terminals can be changed with the input terminal assignment (Pr.178 to Pr.189).
 *3 Terminal JOG is also used as the pulse train input terminal. Use Pr.291 to choose JOG or pulse.

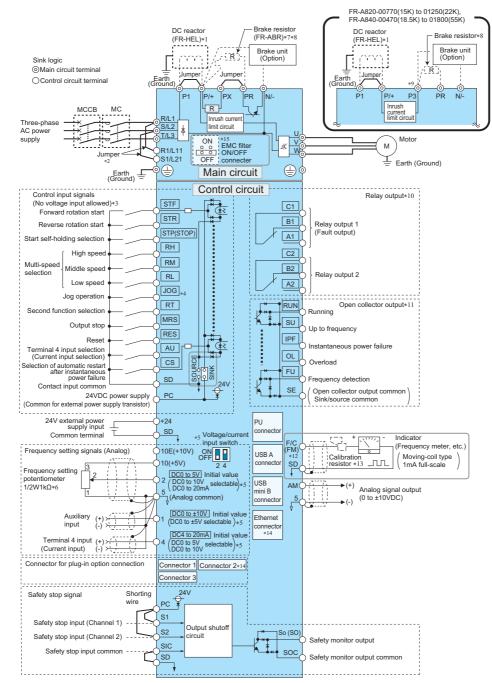

*3 Terminal JOG is also used as the pulse train input terminal. Use **Pr.291** to choose JOG or pulse.
 *4 The X10 signal (NC contact input specification) is assigned to terminal MRS in the initial setting. Set **Pr.599** = "0" to change the input specification of the

X10 signal to NO contact.
 *5 Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input a voltage, set the voltage/current input switch OFF. To input a current, set the voltage/current input switch ON. Terminals 10 and 2 are also used as a PTC input terminal. (Pr.561)

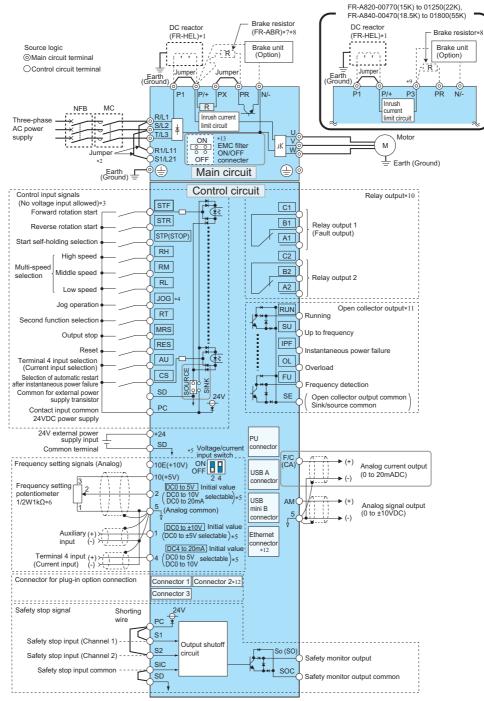

- *6 It is recommended to use 2 W 1 k Ω when the frequency setting signal is changed frequently.
- *7 The function of these terminals can be changed with the output terminal assignment (Pr.195, Pr.196).
- *8 The function of these terminals can be changed with the output terminal assignment (Pr.190 to Pr.194).
- *9 No function is assigned in the initial setting. Use **Pr.192** for function assignment.
- *10 Terminal FM can be used to output pulse trains as open collector output by setting Pr.291.
- *11 Not required when calibrating the scale with the operation panel.

Converter unit (FR-CC2)

· When the sink logic is selected


+ For a 12-phase application

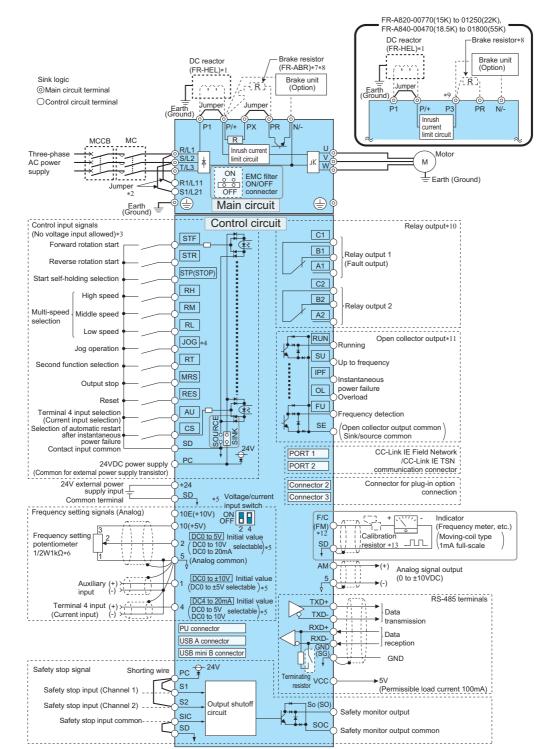
- When using separate power supply for the control circuit, remove the jumpers from R1/L11 and S1/L21.
- *2 The function of these terminals can be changed with the input terminal assignment (Pr.178, Pr.187, Pr.189).
- The function of these terminals can be changed with the output terminal assignment (Pr.195). The function of these terminals can be changed with the output terminal assignment (Pr.190 to Pr.194). *3
- *4
- *5 *6 *7 The connector is for manufacturer setting. Do not use. Plug-in options cannot be used.
- For manufacturer setting. Do not use.
- To use RDA signal of the converter unit, select the NC contact input specification for the input logic of MRS signal or X10 signal of the inverter. To use RDB signal of the converter unit, select the NO contact input specification for the input logic of MRS signal or X10 signal of the inverter. *8 (For changing the input logic, refer to the Instruction Manual of the inverter.)


FR-A800-E

+ FM type

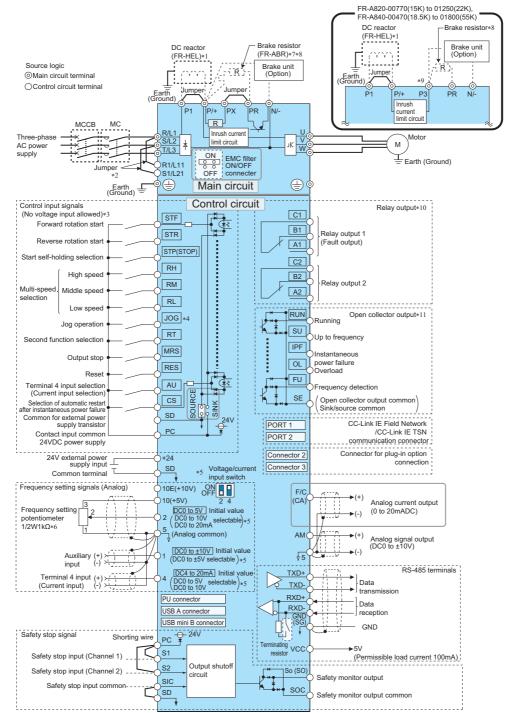
- For the FR-A820-03800(75K) or higher, the FR-A840-02160(75K) or higher, and when a 75 kW or higher motor is used, always connect a DC reactor (FR-*1 HEL), which is available as an option. (To select a DC reactor, refer to page 33, page 223, and select one according to the applicable motor capacity.) When connecting a DC reactor, if a jumper is installed across terminals P1 and P/+, remove the jumper before installing the DC reactor. The IP55 compatible model has a built-in DC reactor. (The jumper is not installed for the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher.)
- *2 When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21. IP55 compatible models do not have terminals R1/L11. S1/L21, and jumpers.
- The function of these terminals can be changed with the input terminal assignment (Pr.178 to Pr.189). (Refer to page 146.) *3
- *4
- Terminal JOG is also used as a pulse train input terminal. Use **Pr.291** to choose JOG or pulse. Terminal input specifications can be changed by analog input specification switchover (**Pr.73, Pr.267**). To input a voltage, set the voltage/current input *5 switch OFF. To input a current, set the voltage/current input switch ON. (Refer to page 132.)
- *6
- It is recommended to use 2 W 1 kΩ when the frequency setting signal is changed frequently. If connecting a brake resistor, remove the jumper between PR and PX (FR-A820-00046(0.4K) to 00490(7.5K), FR-A840-00023(0.4K) to 00250(7.5K)). *7 Connect a brake resistor across terminals P/+ (P3) and PR. (Terminal PR is equipped in FR-A820-00046(0.4K) to 01250(22K), FR-A840-00023(0.4K) to *8
- 01800(55K).) Install a thermal relay to prevent overheating and damage of discharging resistors.
- *9 Do not connect the DC power supply (under DC feeding mode) to terminal P3.
- *10 The function of these terminals can be changed with the output terminal assignment (Pr.195, Pr.196). (Refer to page 147.)
- The function of these terminals can be changed with the output terminal assignment (Pr.190 to Pr.194). (Refer to page 147.) *11
- *12 Terminal F/C (FM) can be used to output pulse trains as open collector output by setting Pr.291.
- *13 Not required when calibrating the scale with the operation panel.
- The option connector 2 cannot be used because the Ethernet board is installed in the initial status. The Ethernet board must be removed to install a plug-in *14 option to the option connector 2. (However, Ethernet communication is disabled in that case.)
- *15 Do not change the initially set ON (enabled) position of the EMC filter ON/OFF connector in the case of the inverter with a built-in C2 filter (IP55 compatible model). The Class C2 compatibility condition is not satisfied with the EMC filter OFF. The FR-A846-00250(7.5K)-C2 to FR-A846-00470(18.5K)-C2 are not provided with the EMC filter ON/OFF connector. The EMC filter is always ON.

+ CA type


*1 For the FR-A820-03800(75K) or higher, the FR-A840-02160(75K) or higher, and when a 75 kW or higher motor is used, always connect a DC reactor (FR-HEL), which is available as an option. (To select a DC reactor, refer to page 33, page 223, and select one according to the applicable motor capacity.) When connecting a DC reactor, if a jumper is installed across terminals P1 and P/+, remove the jumper before installing the DC reactor. The IP55 compatible model has a built-in DC reactor. (The jumper is not installed for the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher.)

When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21. IP55 compatible models do not have terminals R1/L11, S1/L21, and jumpers.

- *3 The function of these terminals can be changed with the input terminal assignment (Pr.178 to Pr.189). (Refer to page 146.)
- *4 Terminal JOG is also used as a pulse train input terminal. Use Pr.291 to choose JOG or pulse
- *5 Terminal input specifications can be changed by analog input specification switchover (**Pr.73**, **Pr.267**). To input a voltage, set the voltage/current input switch OFF. To input a current, set the voltage/current input switch ON. (Refer to **page 132**.)
- *6 It is recommended to use 2 W 1 k Ω when the frequency setting signal is changed frequently.
- If connecting a brake resistor, remove the jumper between PR and PX (FR-A820-00046(0.4K) to 00490(7.5K), FR-A840-00023(0.4K) to 00250(7.5K)).
 Connect a brake resistor across terminals P/+ (P3) and PR. (Terminal PR is equipped in FR-A820-00046(0.4K) to 01250(22K), FR-A840-00023(0.4K) to
- 01800(55K).) Install a thermal relay to prevent overheating and damage of discharging resistors. (Refer to the Instruction Manual (Detailed).) *9 Do not connect the DC power supply (under DC feeding mode) to terminal P3.
- *10 The function of these terminals can be changed with the output terminal assignment (**Pr.195**, **Pr.196**). (Refer to **page 147**.)
- *11 The function of these terminals can be changed with the output terminal assignment (**Pr.190 to Pr.194**). (Refer to **page 147**.)
- *12 The option connector 2 cannot be used because the Ethernet board is installed in the initial status. The Ethernet board must be removed to install a plug-in option to the option connector 2. (However, Ethernet communication is disabled in that case.)
- *13 Do not change the initially set ON (enabled) position of the EMC filter ON/OFF connector in the case of the inverter with a built-in C2 filter (IP55 compatible model). The Class C2 compatibility condition is not satisfied with the EMC filter OFF. The FR-A846-00250(7.5K)-C2 to FR-A846-00470(18.5K)-C2 are not provided with the EMC filter ON/OFF connector. The EMC filter is always ON.


FR-A800-GF, FR-A800-GN

For the FR-A820-03800(75K) or higher, the FR-A840-02160(75K) or higher, and when a 75 kW or higher motor is used, always connect a DC reactor (FR-*1 HEL), which is available as an option. (To select a DC reactor, refer to **page 33**, **page 223**, and select one according to the applicable motor capacity.) When connecting a DC reactor, if a jumper is installed across terminals P1 and P/+, remove the jumper before installing the DC reactor. (The jumper is not installed for the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher.)

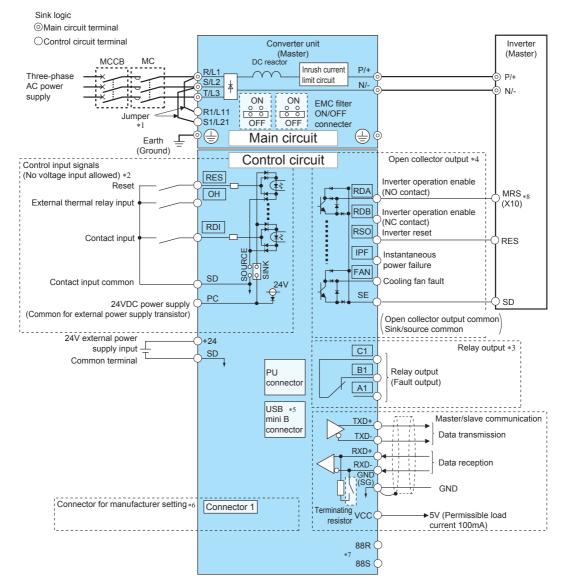
- *2
- When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21. The function of these terminals can be changed with the input terminal assignment (**Pr.178 to Pr.189**). (Refer to **page 146**.) *3
- *4
- Terminal JOG is also used as a pulse train input terminal. Use **Pr.291** to choose JOG or pulse. Terminal input specifications can be changed by analog input specification switchover (**Pr.73, Pr.267**). To input a voltage, set the voltage/current input switch OFF. To input a current, set the voltage/current input switch ON. (Refer to **page 132**.) *5
- It is recommended to use 2 W 1 k Ω when the frequency setting signal is changed frequently *6
- If connecting a brake resistor, remove the jumper between PR and PX (FR-A820-00046(0.4K) to 00490(7.5K), FR-A840-00023(0.4K) to 00250(7.5K)). Connect a brake resistor across terminals P/+ (P3) and PR. (Terminal PR is equipped in FR-A820-00046(0.4K) to 01250(22K), FR-A840-00023(0.4K) to *7 *8
- 01800(55K).) Install a thermal relay to prevent overheating and damage of discharging resistors. *9
- Do not connect the DC power supply (under DC feeding mode) to terminal P3. The function of these terminals can be changed with the output terminal assignment (**Pr.195, Pr.196**). (Refer to **page 147**.) *10
- The function of these terminals can be changed with the output terminal assignment (Pr.190 to Pr.194). (Refer to page 147.) *11
- *12 Terminal F/C (FM) can be used to output pulse trains as open collector output by setting Pr.291.
- *13 Not required when calibrating the scale with the operation panel.

- For the FR-A820-03800(75K) or higher, the FR-A840-02160(75K) or higher, and when a 75 kW or higher motor is used, always connect a DC reactor (FR-*1 HEL), which is available as an option. (To select a DC reactor, refer to **page 33**, **page 223**, and select one according to the applicable motor capacity.) When connecting a DC reactor, if a jumper is installed across terminals P1 and P/+, remove the jumper before installing the DC reactor. (The jumper is not installed for the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher.)
- *2 When using separate power supply for the control circuit, remove the jumper between R1/L11 and S1/L21.
- The function of these terminals can be changed with the input terminal assignment (**Pr.178 to Pr.189**). (Refer to **page 146**.) *3
- Terminal JOG is also used as a pulse train input terminal. Use Pr.291 to choose JOG or pulse *4
- Terminal input specifications can be changed by analog input specification switchover (**Pr.73**, **Pr.267**). To input a voltage, set the voltage/current input switch OFF. To input a current, set the voltage/current input switch ON. (Refer to **page 132**.) *5
- It is recommended to use 2 W 1 k Ω when the frequency setting signal is changed frequently *6
- If connecting a brake resistor, remove the jumper between PR and PX (FR-A820-00046(0.4K) to 00490(7.5K), FR-A840-00023(0.4K) to 00250(7.5K)). Connect a brake resistor across terminals P/+ (P3) and PR. (Terminal PR is equipped in FR-A820-00046(0.4K) to 01250(22K), FR-A840-00023(0.4K) to *7 *8 01800(55K).) Install a thermal relay to prevent overheating and damage of discharging resistors.
- *9
- Do not connect the DC power supply (under DC feeding mode) to terminal P3. The function of these terminals can be changed with the output terminal assignment (**Pr.195, Pr.196**). (Refer to **page 147**.) *10
- The function of these terminals can be changed with the output terminal assignment (Pr.190 to Pr.194). (Refer to page 147.)

Separated converter type (FR-A842-P)

+ FM type

- Terminals R1/L11 and S1/L21 are connected to terminals P/+ and N/- with a jumper respectively. When using separate power supply for the control circuit, *1 remove the jumpers from R1/L11 and S1/L21.
- The function of these terminals can be changed with the input terminal assignment (Pr.178 to Pr.189). *2
- Terminal JOG is also used as the pulse train input terminal. Use Pr.291 to choose JOG or pulse *3
- The X10 signal (NC contact input specification) is assigned to terminal MRS in the initial setting. Set Pr.599 = "0" to change the input specification of the *4 X10 signal to NO contact.
- Terminal input specifications can be changed by analog input specification switchover (Pr.73, Pr.267). To input a voltage (0 to 5 V/0 to 10 V), set the *5 voltage/current input switch OFF. To input a current (4 to 20 mA), set the voltage/current input switch ON. Terminals 10 and 2 are also used as a PTC input terminal. (Pr.561)
- *6 It is recommended to use 2 W 1 k Ω when the frequency setting signal is changed frequently
- *7 The function of these terminals can be changed with the output terminal assignment (Pr.195, Pr.196)
- The function of these terminals can be changed with the output terminal assignment (Pr.190 to Pr.194). *8
- *9 No function is assigned in the initial setting. Use Pr.192 for function assignment.
- Terminal F/C (FM) can be used to output pulse trains as open collector output by setting **Pr.291**. Not required when calibrating the scale with the operation panel. *10
- *11

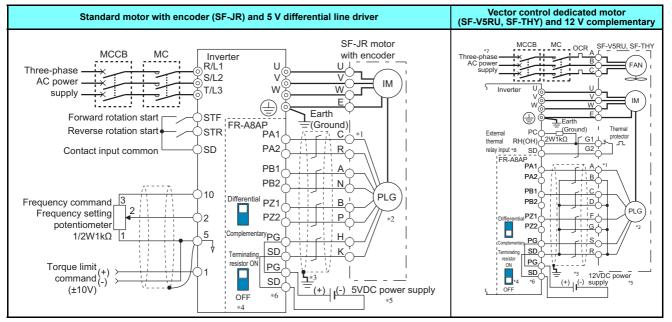

NOTE :

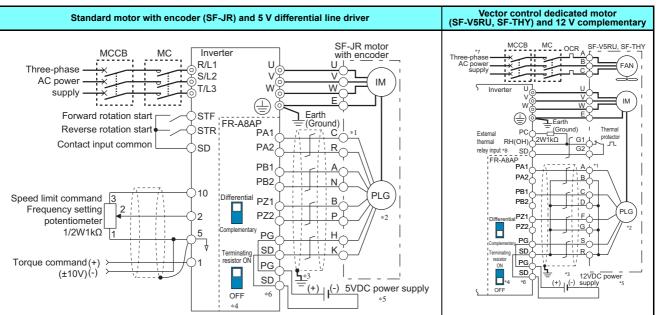
· For the system configuration for the parallel operation, refer to the FR-A802-P Instruction Manual (Hardware).

Terminal Connection Diagram, Terminal Specification Explanation

Converter unit (FR-CC2-P)

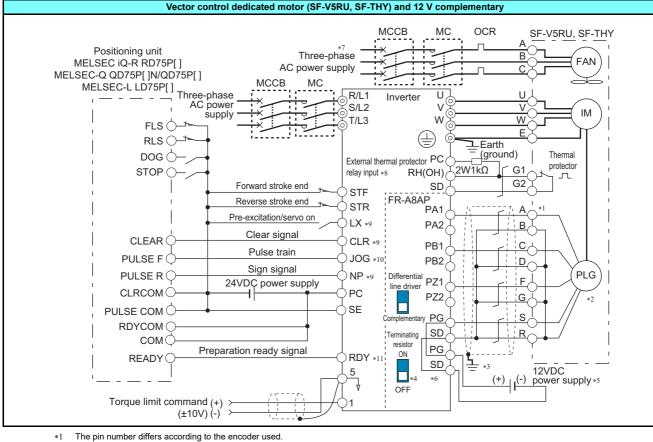
· When the sink logic is selected


- When using separate power supply for the control circuit, remove the jumpers from R1/L11 and S1/L21.
- The function of these terminals can be changed with the input terminal assignment (**Pr.178, Pr.187, Pr.189**). The function of these terminals can be changed with the output terminal assignment (**Pr.195**). The function of these terminals can be changed with the output terminal assignment (**Pr.190 to Pr.194**). *2
- *3
- *4
- The connector is for manufacturer setting. Do not use.
- *5 *6 Plug-in options cannot be used.
- *7 For manufacturer setting. Do not use.
- To use the RDA signal of the converter unit, select the NC contact input specification for the input logic of MRS signal or X10 signal of the inverter. To use the RDB signal of the converter unit, select the NO contact input specification for the input logic of MRS signal or X10 signal of the inverter. (For changing the input logic, refer to the Instruction Manual of the inverter.) *8


· For the system configuration for the parallel operation, refer to the FR-CC2-P Instruction Manual.

• Connection of motor with encoder (vector control) (when the sink logic is selected and the FR-A8AP is used)

Speed control



♦ Torque control

6

Position control

- Speed, control, torque control, and position control by pulse train input are available with or without the Z-phase being connected. Connect the encoder so that there is no looseness between the motor and motor shaft. Speed ratio must be 1:1.
- *2
- *3 Earth (ground) the shield of the encoder cable to the enclosure using a tool such as a P-clip. (Refer to the Instruction Manual (Detailed).)
- *4
- For the complementary, set the terminating resistor selection such to OFF position. (Refer to the Instruction Manual (Detailed).) A separate power supply of 5 V/12 V/15 V/24 V is necessary according to the encoder power specification. *5 When the encoder output is the differential line driver type, only 5 V can be input.
- Make the voltage of the external power supply the same as the encoder output voltage, and connect the external power supply across PG and SD. For terminal compatibility of the FR-JCBL, FR-V7CBL, and FR-A8AP, refer to the Instruction Manual (Detailed). *6
- For the fan of the 7.5 kW or lower dedicated motor, the power supply is single phase. (200 V/50 Hz, 200 to 230 V/60 Hz) Connect the recommended $2W1k\Omega$ resistor between terminals PC and OH. (Recommended *8
- product: MOS2C102J 2W1kΩ by KOA Corporation) Insert the input line and the resistor to a 2-wire blade terminal, and connect the blade terminal to terminal OH. Insulate the lead wire of the resistor, for example by applying a contraction tube, and shape the wires so that the resistor and its lead wire will not touch other cables. Caulk the lead wire securely together with the thermal protector input line using a 2-wire blade terminal. (Do not subject the lead wire's bottom area to an excessive pressure.)
 - To use a terminal as terminal OH, assign the OH (external thermal O/L relay input) signal to an input terminal. (Set "7" in any of Pr.178 to Pr.189. For details, refer to page 146.)
- Assign the function using Pr.178 to Pr.184, Pr.187 to Pr.189 (input terminal function selection).
- When position control is selected, terminal JGG function is invalid and simple position pulse train input terminal becomes valid. Assign the function using **Pr.190 to Pr.194 (output terminal function selection)**. *10
- *11

Inverter

indicates that terminal functions can be selected from Pr.178 to Pr.196 (I/O terminal function selection). Terminal names and terminal functions are those of the factory set.

Ţ	уре	Terminal Symbol	Terminal Name	Description					
		R/L1, S/L2, T/L3*1	AC power input	Connect to the commercial power supply.					
		U, V, W	Inverter output	Connect a three-phase squirrel-cage motor or PM motor.					
		R1/L11, S1/L21*2	Power supply for control circuit	Connected to the AC power supply terminals R/L1 and S/L2. To retain alarm display a power to this terminal.	nd alarm output, apply external				
		P/+, PR	Brake resistor	Connect an optional brake resistor across terminals P/+ and PR. Remove the jumper					
		*1*2 P3, PR	connection	the inverter capacity that has terminal PX. (FR-A820-00630(11K) or lower, FR-A840-0 Connect an optional brake resistor across terminals P3 and PR. (FR-A820-00770(15)					
	.	*1*2	Brake resistor connection	00470(18.5K) to 01800(55K))	() 10 0 1250(22K), FR-A040-				
	rcui	P/+, N/-	Brake unit connection	Connect the brake unit (FR-BU2), power regeneration common converter (FR-CV), por RC), high power factor converter (FR-HC2), multifunction regeneration converter (FR-					
Main ci	Main circuit	P3, N/-	Brake unit connection *3	DC feeding mode). Do not connect the DC power supply between terminals P3 and N/ Use terminals P/ Connect the separated converter type to terminals P/+ and N/- of the converter unit. (' terminal P/+, and do likewise for terminal N/)	+ and N/- for DC feeding. Wire one terminal P/+ to another				
		P/+, P1*1	DC reactor connection	temove the jumper across terminals P/+-P1 and connect a DC reactor. For the FR-A820-03800(75K) or higher, the FR- 840-02160(75K) or higher, and when a 75 kW or higher motor is used, always connect a DC reactor, which is available as n option. (The jumper is not installed for the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher.)					
		PR, PX *1*2	Built-in brake circuit connection	When the jumper is connected across terminals PX and PR (initial status), the built-in brake circuit is equipped in the FR-A820-00490(7.5K) or lower and FR-A840-00250(7					
			Earth (Ground)	For earthing (grounding) the inverter chassis. Must be earthed (grounded).	When the STF and STR signals				
		STF	Forward rotation start	Turn on the STF signal to start forward rotation and turn it off to stop.	are turned on simultaneously,				
		STR STP	Reverse rotation start Start self-holding	Turn on the STR signal to start reverse rotation and turn it off to stop.	the stop command is given.				
		(STOP)	selection	Turn on the STOP signal to self-hold the start signal.					
		RH, RM, RL	Multi-speed selection	Multi-speed can be selected according to the combination of RH, RM and RL signals.					
			Jog mode selection	Turn on the JOG signal to select Jog operation (initial setting) and turn on the start sig operation.	nal (STF or STR) to start Jog				
		JOG	Pulse train input	JOG terminal can be used as pulse train input terminal. To use as pulse train input ter be changed. (maximum input pulse: 100k pulses/s)	minal, the Pr.291 setting needs to				
		RT	Second function selection	Turn on the RT signal to select second function selection When the second function such as "Second torque boost" and "Second V/F (base frequency)" are set, turning on the RT signal selects these functions.					
		MRS	Output stop	Turn on the MRS signal (2 ms or more) to stop the inverter output. Use to shut off the inverter output when stopping the motor by electromagnetic brake. Connect to terminal RDA of the converter unit (FR-CC2). When the RDA signal is turn					
	Contact input	MRS (X10)*8	Output stop (Inverter operation enable)	off. The X10 signal (NC contact) is assigned to terminal MRS in the initial setting. Use to NO contact.	Pr.599 to change the specification				
	ontact	RES	Reset	Used to reset alarm output provided when protective circuit is activated. Turn on the R turn to ff. Recover about 1s after reset is cancelled.	ES signal for more than 0.1s, then				
	ŏ	AU	Terminal 4 input selection	Terminal 4 is made valid only when the AU signal is turned on. Turning the AU signal on makes terminal 2 invalid.					
		CS	Selection of automatic restart after instantaneous power failure	When the CS signal is left on, the inverter restarts automatically at power restoration. necessary for this operation. In the initial setting, a restart is disabled.	Note that restart setting is				
-			Contact input common (sink)*4	Common terminal for the contact input terminal (sink logic) and terminal FM.					
uit/input signal		SD	External transistor common (source)*5	Connect this terminal to the power supply common terminal of a transistor output (open collector output) device, such as a programmable controller, in the source logic to avoid malfunction by undesirable current.					
put			24 VDC power supply common	Common terminal for the 24 VDC power supply (terminal PC, terminal +24) Isolated from terminals 5 and SE.					
t/in			External transistor	Connect this terminal to the power supply common terminal of a transistor output (oper	n collector output) device, such as				
rcui			common (sink)*4	a programmable controller, in the sink logic to avoid malfunction by undesirable current					
Control circ		PC	Contact input common (source)*5	Common terminal for contact input terminal (source logic).					
ntro			24 VDC power supply	Can be used as 24 VDC 0.1 A power supply.					
ပိ		10E	Frequency setting	When connecting a frequency setting potentiometer at an initial status, connect it to	10 VDC ±0.4 V, permissible load current 10 mA				
		10	power supply	terminal 10. Change the input specifications of terminal 2 when connecting it to terminal 10E.	5 VDC ±0.5 V, permissible load current 10 mA				
	setting	2	Frequency setting (voltage)	Inputting 0 to 5 VDC (or 0 to 10 V, 4 to 20 mA) provides the maximum output frequency at 5 V (10 V, 20 mA) and makes input and output proportional. Use Pr.73 to switch from among input 0 to 5 VDC (initial setting), 0 to 10 VDC, and 4 to 20 mA. Set the voltage/current input switch in the ON position to select current input (0 to 20 mA). Inputting 4 to 20 mADC (or 0 to 5 V, 0 to 10 V) provides the maximum output	Voltage input: Input resistance 10 k $\Omega \pm 1$ k Ω Maximum permissible voltage 20 VDC				
	Frequency setting	4	Frequency setting (current)	frequency at 20 mA and makes input and output proportional. This input signal is valid only when the AU signal is on (terminal 2 input is invalid). Use Pr.267 to switch from among input 4 to 20 mA (initial setting), 0 to 5 VDC, and 0 to 10 VDC. Set the voltage/ current input switch in the OFF position to select voltage input (0 to 5 V/0 to 10 V). Use Pr.858 to switch terminal functions.	Current input: Input resistance 245 Ω $\pm5~\Omega$ Maximum permissible current 30 mA				
		1	Frequency setting auxiliary	Inputting 0 to ± 5 VDC or 0 to ± 10 VDC adds this signal to terminal 2 or 4 frequency setting signal. Use Pr.73 to switch between input 0 to ± 5 VDC and 0 to ± 10 VDC (initial setting) input.	Input resistance 10 k Ω ±1 k Ω Maximum permissible voltage ±20 VDC				
		5	Frequency setting common	Common terminal for frequency setting signal (terminal 2, 1 or 4) and analog output to (ground).					
	Thermistor	10 2	PTC thermistor input	For receiving PTC thermistor outputs. When PTC thermistor is valid (Pr.561 ≠ "9999"), terminal 2 is not available for frequency setting.	Applicable PTC thermistor specification Overheat detection resistance: 500 Ω to 30 k Ω (Set by Pr.561)				
	Power supply input	+24	24 V external power supply input	For connecting 24 V external power supply. If the 24 V external power supply is connected, power is supplied to the control circuit while the main power circuit is OFF.	Input voltage 23 to 25.5 VDC Input current 1.4 A or less				

Т	Туре		Terminal Symbol		Descrip	otion			
	Relay		, B1, C1 , B2, C2	Relay output 1 (alarm output) Relay output 2	1 changeover contact output indicates that the inverter protect activated and the output stopped. Alarm: discontinuity across A-C), Normal: continuity across B-C (discontinuity across A-C 1 changeover contact output	B-C (continuity across	Contact capacity 230 VAC 0.3 A (power factor =0.4) 30 VDC 0.3 A		
			RUN	Inverter running	Switched low when the inverter output frequency is equal to or frequency (initial value 0.5 Hz). Switched high during stop or operation.	higher than the starting DC injection brake			
			SU	Up to frequency	Switched low when the output frequency reaches within the range of ±10% (initial value) of the set frequency. Switched high during acceleration/deceleration and at a stop.		Permissible load 24 VDC (maximum 27 VDC) 0.1 A		
gnal	Open collector		OL Overload alarm		Switched low when stall prevention is activated by the stall prevention function. Switched high when stall prevention is cancelled.	(The voltage drop is 2.8 V at maximum while the signal is ON.) LOW is when the open collector			
ut siç	o uac		IPF	Instantaneous power failure	Switched low when an instantaneous power failure and under voltage protections are activated.	output transistor is ON (conducted). HIGH is when the			
outp	ŏ		IPF*8	Open collector output	No function is assigned in the initial setting. The function can be assigned setting Pr.192 .	transistor is OFF (not conducted).			
Control circuit/output signal		FU		Frequency detection	Switched low when the inverter output frequency is equal to or higher than the preset detected frequency and high when less than the preset detected frequency.				
ntro		SE		Open collector output common	Common terminal for terminals RUN, SU, OL, IPF, FU				
ပိ	Pulse	FM∗6		For meter	Select one e.g. output frequency from monitor items. (The	Output item: output free permissible load curren For full scale1440 pulse	it 2 mÁ, es/s		
	ā			NPN open collector output	signal is not output during an inverter reset.)		from the open collector terminals kimum output pulse: 50kpulses/s)		
	Analog		АМ	Analog voltage output	The output signal is proportional to the magnitude of the corresponding monitoring item. The output signal is proportional to the magnitude of the corresponding monitoring item.Use Pr.55 , Pr.56 , and Pr.866 to set full scales for the monitored output frequency, output current, and torque.	Output item: output free output signal 0 to ±10 \ permissible load currer (load impedance 10 kC resolution 8 bit	quency (initial setting), /DC, it 1 mA		
	A	CA *7		Analog current output		Output item: output free Load impedance 200 C Output signal 0 to 20 m	Ω to 450 Ω nADC		
		_		PU connector	With the PU connector, communication can be made through • Conforming standard: EIA-485(RS-485) • Transmission format: Multi-drop link	Communication spee Wiring length: 500 m	d: 4800 to 115200 bps		
			TXD+, TXD-	Inverter transmission terminal	With the RS-485 terminals, communication can be made through RS-485. (The FR-A800-E inverter does not have the interface.)				
		RS-485 erminals	RXD+, RXD-	Inverter reception terminal	Conforming standard: EIA-485(RS-485) Transmission format: Multi-drop link Overall extension: 500 m				
:		RS-485 terminal	GND (SG)	Earth (Ground)	o inverters in parallel connection have the RS-485 communication via the RS-485 terminals on each inverter. (FR- 42-P) otal wring length: 5 m or less				
	unic			USB A connector	A connector (receptacle). A USB memory device enables parameter copies and the trac	ce function.	Interface: Conforms to USB1.1		
	Communication	-		USB B connector	Mini B connector (receptacle). (USB2.0 full-speed compatible Connected to a personal computer via USB to enable setting, monitoring, test Transmission speed: 12 Mbps operations of the inverter by FR Configurator2. Transmission speed: 12 Mbps				
		CC-Link IE	CON1	Connector for communication (Port 1)	Communication can be made via the CC-Link IE TSN or CC-I (The FR-4800-GN or FR-4800-GF has the interface. For the		munication option FR-A8NCG or		
		CC-L	CON2	Connector for communication (Port 2)	(The FR-A800-GN or FR-A800-GF has the interface. For the other inverters, the communication option FR-A8NCG or FR-A8NCE is available.)				
			_	Ethernet connector	Using Ethernet communication, the inverter's status can be m the FR-A800-E inverter has the interface.)		ers can be set via Internet. (Only		
			S1	Safety stop input (Channel 1)	Terminals S1 and S2 are used for the safety stop input signal for the safety relay module. Terminals S1 and S2 are used at the same time (dual channel). Inverter output is shutoff by shortening/opening between terminals S1 and SIC, or between S2 Input auront 4 to 6 mADC				
	nal*9		S2	Safety stop input (Channel 2)	and SIC. In the initial status, terminals S1 and S2 are shorted shorting wires. Terminal SIC is shorted with terminal SD. Rem and connect the safety relay module when using the safety st	(with 24 VDC input)			
	o sig		SIC	Safety stop input terminal common	Common terminal for terminals S1 and S2.		-		
	Safety stop signal*9	s	o (SO)	Safety monitor output (open collector output)	Indicates the safety stop input signal status. Switched to LOW when the status is other than the internal sa Switched to HIGH during the internal safety circuit failure stat (LOW is when the open collector output transistor is ON (cond the transistor is OFF (not conducted).) Refer to the Safety Stop Function Instruction Manual (BCN-A signal is switched to HIGH while both terminals S1 and S2 and	us. ´ ducted). HIGH is when 23228-001) when the	Permissible load 24 VDC (maximum 27 VDC) 0.1 A (The voltage drop is 3.4 V at maximum while the signal is ON.)		
			SOC	Safety monitor output terminal common	Common terminal for terminal So (SO).		_		
*1 Terminals R/L1. S/L2. T/L3. PR. P3. P1. and PX are not provided in the separated converter type.					•				

*1

*2 *3 *4 *5 *6 *7 *8 *9

 terminal common
 common benafies on terminal so (SO).

 Terminals R/L1, S/L2, T/L3, PR, P3, P1, and PX are not provided in the separated converter type.

 Terminals R1/L11, S1/L21, PR, P3, and PX are not provided for the IP55 compatible model.

 Available for the FR-A820-00770(15K) to FR-A820-01250(22K), and the FR-A840-00470(18.5K) to FR-A840-01800(55K).

 The sink logic is initially set for the CA-type inverter.

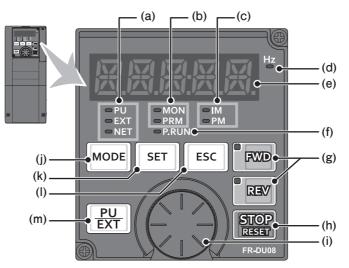
 Terminal FM is provided in the FM-type inverter.

 Terminal CA is provided in the CA-type inverter.

 Function and name of the separated converter type.

 The terminals are for manufacturer setting for the FR-A842-P. Do not connect anything to these. Doing so may damage the inverter.

 Do not remove the shorting wires across the terminals S1 and PC, the terminals S2 and PC, and the terminals SIC and SD. Removing either shorting wire disables the inverter operation.


• Converter unit (FR-CC2)

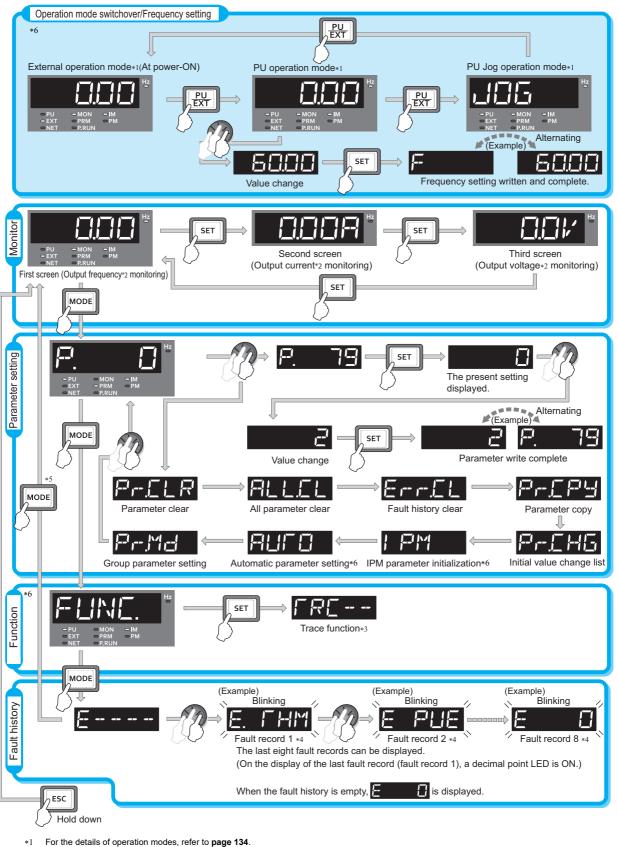
indicates that terminal functions can be selected from Pr.178, Pr.187, Pr.189 to Pr.195 (I/O terminal function selection). Terminal names and terminal functions are those of the factory set.

	уре		l Symbol	functions are those of the Terminal Name	Description							
	ŧ	(R2/L12	/L2, T/L3 , S2/L22, L32)	AC power input	Connect these terminals to the commercial power supply. For 12-phase applications, use these terminals for connection with a 12 transformer (3-winding transformer). For details, refer to the Instruction Manual of the converter unit.	-phase rectifier power						
	Main circuit	R1/L11	,S1/L21	Power supply for the control circuit	Connected to the AC power supply terminals R/L1 and S/L2. To retain to output, remove the jumpers across terminals R/L1 and R1/L11 and across supply external power to these terminals.							
	Ма	P/+	, N/-	Inverter connection	Connect to terminals P/+ and N/- of the inverter. (Wire one terminal P/+ and do likewise for terminal N/)	to another terminal P/+,						
			Ð	Earth (ground)	For earthing (grounding) the converter unit chassis. This must be earthed (grounded).							
		RI	ES	Reset	Use this signal to reset a fault output provided when a protective function the RES signal for 0.1 s or longer, then turn it OFF. In the initial setting, reset is always enabled. By setting Pr.75 , reset can fault occurrence of the converter unit. The inverter recovers about 1 s a	be set enabled only at						
		O	н	External thermal relay input	The external thermal relay input (OH) signal is used when using an external protector built into the motor to protect the motor from overheat When the thermal relay is activated, the inverter trips by the external the (E.OHT).	tect the motor from overheating.						
		R	DI	Contact input	The function can be assigned by setting Pr.178 .							
Jnal	Indu			Contact input common (sink) (Initial setting)	Common terminal for contact input terminal (sink logic).							
Control circuit/input signal	Contact input	SD		External transistor common (source)	Connect this terminal to the power supply common terminal of a transis output) device, such as a programmable controller, in the source logic to undesirable current.	1 1 1						
circuit				24 VDC power supply common Common terminal for the 24 VDC power supply (terminal PC, terminal +24 Isolated from terminals 5 and SE.		+24)						
Control o						External transistor common (sink) (Initial setting)	Connect this terminal to the power supply common terminal of a transistor output (open collector output) device, such as a programmable controller, in the source logic to avoid malfunction by undesirable current.					
Ū		Р	C	Contact input common (source)	Common terminal for contact input terminal (source logic).							
				24 VDC power supply common	Can be used as a 24 VDC 0.1 A power supply.							
	Power supply input	+24 24 V external po supply inpu			For connecting a 24 V external power supply. If a 24 V external power supply is connected, power is supplied to the c main power circuit is OFF.	ontrol circuit while the						
	Relay	A1, B1, C1		A1, B1, C1		A1, B1, C1		A1, B1, C1		Relay output 1 (fault output)	1 changeover contact output that indicates that the protective function of the converter unit has been activated and the outputs are stopped. Fault: discontinuity across B and C (continuity across A and C), Normal: continuity across Band C (discontinuity across A and C)	Contact capacity 230 VAC 0.3 A (power factor = 0.4) 30 VDC 0.3 A
le		88R,	, 88S	For manufacturer setting. D	lo not use.							
out signal		RI	DA	Inverter operation enable (NO contact)	Switched to LOW when the converter unit operation is ready. Assign the signal to terminal MRS (X10) of the inverter. The inverter can be started when the RDA status is LOW.	Permissible load 24 VDC (maximum 27 VDC)						
Control circuit/output	ctor	RI	DB	Inverter operation enable (NC contact)	Switched to LOW when a converter unit fault occurs or the converter is reset. The inverter can be started when the RDB status is HIGH.	011						
ntrol cir	Open collector	R	50	Inverter reset	Switched to LOW when the converter is reset (RES-ON). Assign the signal to terminal RES of the inverter. The inverter is reset when it is connected with the RSO status LOW.	LOW is when the open collector output transistor is ON						
ပိ	do	IF	۶F	Instantaneous power failure	Switched to LOW when an instantaneous power failure is detected.	(conducted). HIGH is when the						
		F/	AN	Cooling fan fault	Switched to LOW when a cooling fan fault occurs.	transistor is OFF (not conducted).						
		s	E	Open collector output common	Common terminal for terminals RDA, RDB, RSO, IPF, FAN	-						
	Communication	-	-	PU connector	With the PU connector, communication can be made through RS-485. (basis only) • Conforming standard: EIA-485 (RS-485) • Transmission format: Multidrop link • Communication speed: 4800 to 115200 bps • Wiring length: 500 m	For connection on a 1:1						
	munic		TXD+ TXD-	Converter unit transmission terminal	The RS-485 terminals enable the communication by RS-485. • Conforming standard: EIA-485 (RS-485)							
	Com	RS-485 terminals	RXD+ RXD-	Converter unit reception terminal	 Transmission format: Multidrop link Communication speed: 300 to 115200 bps Overall length: 500 m 							
			GND (SG)	Earthing (grounding)	Two inverters in parallel connection have the RS-485 communication via each inverter. (FR-CC2-P)	the RS-485 terminals on						
			(30)		Total wiring length : 5 m or less							

Operation Panel (FR-DU08(-01))

• Components of the operation panel

The operation panel of the inverter can be used for the converter unit.

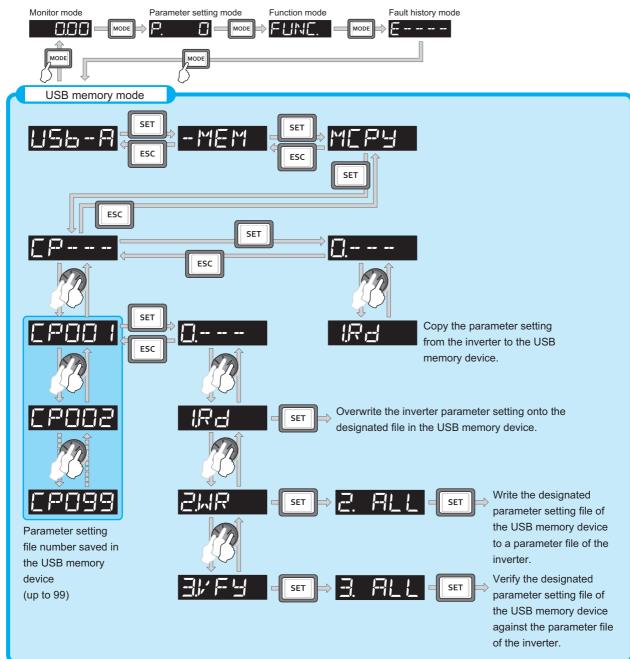

No.	Compo	onent *1	Name	Description				
(a)	FR-DU08 FR-DU08-01		Operation mode indicator *2	 PU/HAND: ON when the inverter is in the PU operation mode. EXT/AUTO: ON when the inverter is in the External operation mode. (ON when the inverter in the initial setting is powered ON.) NET: ON when the inverter is in the Network operation mode. PU and EXT: ON when the inverter is in the External/PU combined operation mode 1 or 2. 				
(b)	0 0 0		Operation panel status indicator	MON: ON when the operation panel is in the monitoring mode. Quickly blinks twice intermittently while the protective function is activated. PRM: ON when the operation panel is in the parameter setting mode.				
(c)	0 IN 0 Pi		Control motor indicator *2	IM: ON when the inverter is set to control the induction motor. PM: ON to indicate the PM motor control. The indicator blinks during test operation.				
(d)	Ξu		Frequency unit indicator *2	ON when the actual frequency is monitored. (Blinks when the set frequency is monitored.)				
(e)		388	Monitor (5-digit LED)	Shows a numeric value (readout) of a monitor item such as the frequency or a parameter number.(The monitor item can be changed according to the settings of Pr.52, Pr.774 to Pr.776.)				
(f)	• P.	RUN	PLC function indicator *2	ON when the PLC function of the inverter is valid.				
(g)	FWD						FWD key, REV key *2	 FWD key: Starts forward rotation operation. Its LED is ON during forward operation. REV key: Starts reverse rotation operation. Its LED is ON during reverse operation. Either LED blinks under the following conditions. When the frequency command is not given even if the forward/reverse command is given. When the frequency command is equal to the starting frequency or lower. When the MRS signal is being input.
(h)	ST	OP Set	STOP/RESET key	Stops the operation commands. Used to reset the inverter when the protection function is activated.				
(i)			Setting dial	The setting dial of the Mitsubishi Electric inverters. Turn the setting dial to change the setting of frequency or parameter, etc. Press the setting dial to perform the following operations: • To display a set frequency in the monitoring mode (The monitor item shown on the display can be changed by using Pr.992.) • To display the present setting during calibration • To display a fault history number in the fault history mode				
(j)	MODE		MODE key	Switches the operation panel to a different mode. The easy setting of the inverter operation mode is enabled by pressing this key simultaneously with $\boxed{\frac{PU}{EXT}}$. Every key on the operation panel becomes inoperable by holding this key for 2 seconds. The key inoperable function is invalid when Pr.161="0 (initial setting)". (Refer to the FR-A800 Instruction Manual (Detailed).)				
(k)	SET		SET key	Confirms each selection. Initial setting in the monitor mode When this key is pressed during inverter operation, the monitor item changes. Output frequency → Output current → Output voltage (The monitor item can be changed according to the settings of Pr.52, Pr.774 to Pr.776.)				
(I)	ESC		ESC key	Goes back to the previous display. Holding this key for a longer time changes the display back to the monitor mode.				
(m)	FR-DU08	FR-DU08-01	PU/EXT key *2	Switches between the PU operation mode, the PUJOG operation mode, and the External operation mode.				
. ,	EXT HAND			Switches to the easy setting mode by pressing simultaneously with MODE. Also cancels the PU stop warning.				

*1 The FR-DU08-01 is an operation panel for IP55 compatible models.

*2 Not available for the converter unit.

Operation Panel (FR-DU08(-01)), LCD operation panel (FR-LU08(-01))

Basic operation(FR-DU08)



- The monitor items can be changed.(Refer to **page 125**.) For the details of the trace function, refer to **page 174**. *2 *3
- While a fault is displayed, the display shifts as follows by pressing string: Output frequency at the fault \rightarrow Output current \rightarrow Output voltage \rightarrow Energization *4 time \rightarrow Year \rightarrow Month \rightarrow Date \rightarrow Time. (After Time, it goes back to a fault display.) Pressing the setting dial shows the fault history number. The USB memory mode will appear if a USB memory device is connected. (Refer to **page 69**.)
- *5
- *6 Not available for the converter unit.

Operation Panel (FR-DU08(-01)), LCD operation panel (FR-LU08(-01))

• Parameter copy to the USB memory device

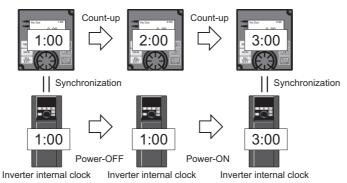
Insert the USB memory in the inverter. The USB memory mode is displayed and USB memory operations are possible.

• Group parameter display

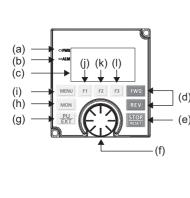
Parameter numbers can be changed to grouped parameter numbers. Parameters are grouped by their functions. The related parameters can be set easily.

(1) Changing to the grouped parameter numbers

Pr.MD setting value	Description
0	No change
1	Parameter display by parameter number
2	Parameter display by function group

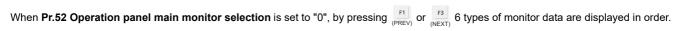

	Operation
1.	Turning ON the power of the inverter The operation panel is in the monitor mode.
	Selecting the parameter setting mode
2.	Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
	Selecting the parameter
3.	Turn 🚱 until "
	Press SET. "[]" (initial value) will appear.
	Selecting the use of the function group number
4.	Turn 🚱 to change the set value to ", " (group parameter display). Press SET to select the group parameter setting. ", " "
	and ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(2)	Changing parameter settings in the group parameter display
_	
	Changing example Change the P.H400(Pr.1) Maximum frequency. Operation
	Turning ON the power of the inverter
1.	The operation panel is in the monitor mode.
	Changing the operation mode
2.	Press PU to choose the PU operation mode. [PU] indicator is lit.
	Selecting the parameter setting mode
3.	Press MODE to choose the parameter setting mode. (The parameter number read previously appears.)
	Enabling the function group selection
	Press ESC several times until "
4.	(No need to press [ESC] if the previously read parameter is one of "Pr-「」」 R " to "Pr-M」". Skip this operation and
	proceed to step 5)
	Enabling the function group selection
5.	Turn 🕄 until "🏳
	the group parameters of the protective function parameter 4 selectable.
	Selecting the parameter
6.	Turn 😥 until ""
	" /⊇□□□" (initial value) appears.
	Changing the setting value
7.	Turn 🕄 to change the set value to "旨[]]] ". Press SET to enter the setting. "旨[]]] " and "PHH]]" are dis-
	played alternately after the setting is completed

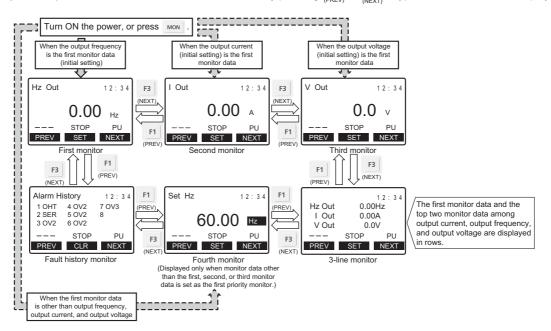
LCD operation panel (FR-LU08(-01))


- The FR-LU08 is an optional operation panel adopting an LCD panel capable of displaying text and menus.
- Replacement with the operation panel (FR-DU08) and installation on the enclosure surface using a connection cable (FR-CB2) are
 possible. (To connect the FR-LU08, an optional operation panel connection connector (FR-ADP) is required.)
- Parameter settings for up to three inverters can be saved.
- When the FR-LU08 is connected to the inverter, the internal clock of the inverter can be synchronized with the clock of FRLU08. (Real time clock function)

With a battery (CR1216), the FR-LU08 time count continues even if the main power of the inverter is turned OFF. (The time count of the inverter internal clock does not continue when the inverter power is turned OFF.)

• The FR-LU08-01 meets the IP55 rating (except for the PU connector). It can be directly installed to the IP55 compatible model.


Appearance and parts name



	Symbol	Name	Description			
	а	Power lamp	ON when the power is turned ON.			
	b	Alarm lamp	ON when an inverter alarm occurs.			
	с	Monitor	Shows the frequency, parameter number, etc. (Using Pr.52, Pr.774 to Pr.776 , the monitored item can be changed.)			
	d	FWD key, REV key	FWD key: Starts the forward operation. REV key: Starts the reverse operation.			
)	е	STOP/RESET key	Used to stop operation commands. Used to reset the inverter when the protective function is activated.			
)	f	Setting dial	The setting dial is used to change the frequency and parameter settings. Pressing the dial shows details of the fault history mode.			
	g	PU/EXT key *1	Switches between the PU mode, the PUJOG mode, and the External operation mode.			
	h	MON key	Shows the first monitored item.			
	i	MENU key	Displays the quick menu. Pressing the key while the quick menu is displayed displays the function menu.			
	j	Software key (F1)				
	k	Software key (F2)	Select a guidance displayed on the monitor.			
	I	Software key (F3)				

*1 HAND/AUTO key for the FR-LU08-01.

Switching the main monitor data

• Inverter parameter list (by parameter number)

For simple variable-speed operation of the inverter, the initial value of the parameters may be used as they are. Set the necessary parameters to meet the load and operational specifications. Parameter setting, change and check can be made from the operation panel (FR-DU08).

• NOTE

- Simple indicates simple mode parameters. Use Pr.160 User group read selection to indicate the simple mode
- parameters only.
 Parameter setting may be restricted in some operating statuses. Use Pr.77 Parameter write selection to change the setting.

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value		Refer	er g
						FM	CA	to page	Customer setting
Basic functions	0	G000	Torque boost <i>Simple</i>	0 to 30%	0.1%	6% *1 4% *1 3% *1 2% *1 1% *1		117	
	1	H400	Maximum frequency Simple	0 to 120 Hz	0.01 Hz	120 Hz *2 60 Hz *3		117	
	2	H401	Minimum frequency Simple	0 to 120 Hz	0.01 Hz	0 Hz		117	
	3	G001	Base frequency Simple	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	117	
	4	D301	Multi-speed setting (high speed) Simple	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	118	
	5	D302	Multi-speed setting (middle speed)	0 to 590 Hz	0.01 Hz	30 Hz		118	
	6	D303	Multi-speed setting (low speed)	0 to 590 Hz	0.01 Hz	10 Hz		118	
	7	F010	Acceleration time Simple	0 to 3600 s	0.1 s	5 s *4 15 s *5		118	
	8	F011	Deceleration time Simple	0 to 3600 s	0.1 s	5 s *4 15 s *5		118	
	9	H000 C103	Electronic thermal O/L relay Simple	0 to 500 A	0.01 A *2	Inverter rated current		119	
			Rated motor current Simple	0 to 3600 A	0.1 A *3				
DC injection brake	10	G100	DC injection brake operation frequency	0 to 120 Hz, 9999	0.01 Hz	3 Hz		119	
	11	G101	DC injection brake operation time	0 to 10 s, 8888	0.1 s	0.5 s 4% *6 2% *6 1% *6		119	
DC ii b	12	G110	DC injection brake operation voltage	0 to 30%	0.1%			119	
—	13	F102	Starting frequency	0 to 60 Hz	0.01 Hz	0.5 Hz		120	
_	14	G003	Load pattern selection	0 to 5, 12 to 15	1	0		120	
Jog operation	15	D200	Jog frequency	0 to 590 Hz	0.01 Hz	5 Hz		120	
	16	F002	Jog acceleration/deceleration time	0 to 3600 s	0.1 s	0.5 s		120	
—	17	T720	MRS input selection	0, 2, 4	1	0		121	
—	18	H402	High speed maximum frequency	0 to 590 Hz	0.01 Hz	120 Hz *2 60 Hz *3		117	
_	19	G002	Base frequency voltage	0 to 1000 V, 8888, 9999	0.1 V	9999	8888	117	
Acceleration/ deceleration times	20	F000	Acceleration/deceleration reference frequency	1 to 590 Hz	0.01 Hz	60 Hz	50 Hz	118	
	21	F001	Acceleration/deceleration time increments	0, 1	1	0		118	
Stall prevention	22	H500	Stall prevention operation level (Torque limit level)	0 to 400%	0.1%	150%		121	
	23	H610	Stall prevention operation level compensation factor at double speed	0 to 200%, 9999	0.1%	9999		121	

Ę					Minimum	Initial value	Refer	er g
Function	Pr.	Pr.	Name	Setting range	setting	FM CA	to	Customer setting
Fur		group			increments	FM CA	page	Cus
Multi-speed setting	24 to 27	D304 to D307	Multi-speed setting (4 speed to 7 speed)	0 to 590 Hz, 9999	0.01 Hz	9999	118	
_	28	D300	Multi-speed input compensation selection	0, 1	1	0	118	
—	29	F100	Acceleration/deceleration pattern selection	0 to 6	1	0	122	
_	30	E300	Regenerative function selection	0 to 2, 10, 11, 20, 21, 100 to 102, 110, 111, 120, 121 *11 2, 10, 11, 102, 110,	1	0	123	
				111 *12 0, 2, 10, 20, 100, 102, 110, 120 *13	1	0	-	
	31	H420	Frequency jump 1A	0 to 590 Hz, 9999	0.01 Hz	9999	124	
5	32	H421	Frequency jump 1B	0 to 590 Hz, 9999	0.01 Hz	9999	124	
Frequency jump	33	H422		0 to 590 Hz, 9999	0.01 Hz	9999	124	
npé	34	H423	Frequency jump 2B	0 to 590 Hz, 9999	0.01 Hz	9999	124	
Fre	35	H424	Frequency jump 3A	0 to 590 Hz, 9999	0.01 Hz	9999	124	
	36	H425	Frequency jump 3B	0 to 590 Hz, 9999	0.01 Hz	9999	124	
_	37	M000	Speed display	0, 1 to 9998	1	0	124	
δĘ	41	M441	Up-to-frequency sensitivity	0 to 100%	0.1%	10%	125	
Frequency detection	42	M442	Output frequency detection	0 to 590 Hz	0.01 Hz	6 Hz	125	
Fred	43	M443	Output frequency detection for reverse rotation	0 to 590 Hz, 9999	0.01 Hz	9999	125	
	44	F020	Second acceleration/deceleration time	0 to 3600 s	0.1 s	5 s	118	
	45	F021	Second deceleration time	0 to 3600 s, 9999	0.1 s	9999	118	
S	46	G010	Second torque boost	0 to 30%, 9999	0.1%	9999	117	
ion	47	G011	Second V/F (base frequency)	0 to 590 Hz, 9999	0.01 Hz	9999	117	
functions	48	H600	Second stall prevention operation level	0 to 400%	0.1%	150%	121	
Second	49	H601	Second stall prevention operation frequency	0 to 590 Hz, 9999	0.01 Hz	0 Hz	121	
Sec	50	M444	Second output frequency detection	0 to 590 Hz	0.01 Hz	30 Hz	125	
	51	H010	Second electronic thermal O/L relay	0 to 500 A, 9999 *2	0.01 A	9999	119	
		C203	Rated second motor current	0 to 3600 A, 9999 *3	0.1 A			
ions	52	M100	Operation panel main monitor selection	0, 5 to 14, 17 to 20, 22 to 36, 38 to 46, 50 to 57, 61, 62, 64, 67, 71 to 75, 87 to 98, 100	1	0	125	
Monitor functions	54	M300	FM/CA terminal function selection	1 to 3, 5 to 14, 17, 18, 21, 24, 32 to 34, 36, 46, 50, 52, 53, 61, 62, 67, 70, 87 to 90, 92, 93, 95, 97, 98	1	1	125	
_	55	M040	Frequency monitoring reference	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	127	
	56	M041	Current monitoring reference	0 to 500 A *2 0 to 3600 A *3	0.01 A 0.1 A	Inverter rated current	127	
natic	57	A702	Restart coasting time	0, 0.1 to 30 s, 9999	0.1 s	9999	128	
Automatic restart	58	A703	Restart cushion time	0 to 60 s	0.1 s	1 s	128	
_	59	F101	Remote function selection	0 to 3, 11 to 13	1	0	129	
_	60	G030	Energy saving control selection	0, 4, 9	1	0	129	

Ę					Minimum	Initial	value	Refer	er
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM	СА	to to page	Customer setting
	61	F510	Reference current	0 to 500 A, 9999 *2	0.01 A *2	9999		130	
tion		FF44		0 to 3600 A, 9999 *3	0.1 A *3	0000			
om <i>a</i> erat lera	62	F511	Reference value at acceleration	0 to 400%, 9999	0.1%	9999		130	
Automatic acceleration/ deceleration	63	F512	Reference value at deceleration	0 to 400%, 9999	0.1%	9999		130	
ςa	64	F520	Starting frequency for elevator mode	0 to 10 Hz, 9999	0.01 Hz	9999		130	
—	65 *19	H300	Retry selection	0 to 5	1	0		130	
_	66	H611	Stall prevention operation reduction starting frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	121	
У	67 *19	H301	Number of retries at fault occurrence	0 to 10, 101 to 110	1	0		130	
Retry	68 *19	H302	Retry waiting time	0.1 to 600 s	0.1 s	1 s		130	
₽£	69 *19	H303	Retry count display erase	0	1	0		130	
—	70 *14	G107	Special regenerative brake duty	0 to 100%	0.1%	0%		123	
_	71	C100	Applied motor	0 to 6, 13 to 16, 20, 23, 24, 30, 33, 34, 40, 43, 44, 50, 53, 54, 70, 73, 74, 330, 333, 334, 8090, 8093, 8094, 9090, 9093, 9094	1	0		131	
—	72 *19	E600	PWM frequency selection	0 to 15 *2 0 to 6, 25 *3	1	2		131	
_	73	T000	Analog input selection	0 to 7, 10 to 17	1	1		132	
_	74	T002	Input filter time constant	0 to 8	1	1		132	
_	75	-	Reset selection/disconnected PU detection/PU stop selection	0 to 3, 14 to 17, 1000 to 1003, 1014 to 1017 *2 0 to 3, 14 to 17, 100 to 103, 114 to 117, 1000 to 1003, 1014 to 1017, 1100 to 1103,1114 to 1117 *3	1	14		133	
		E100	Reset selection	0 to 3	-	0			
		E101	Disconnected PU detection	0, 1		-			
		E102	PU stop selection			1			
		E107	Reset limit	0 *2 0, 1 *3	1	0			
—	76	M510	Fault code output selection	0 to 2	1	0		133	
_	77	E400	Parameter write selection	0 to 2	1	0		134	
_	78	D020	Reverse rotation prevention selection	0 to 2	1	0		134	
_	79	D000	Operation mode selection Simple	0 to 4, 6, 7	1	0		134	

u		_			Minimum	Initial value	Refer	ner g
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM CA	to page	Customer setting
ш				0.4 to 55 kW, 9999 *2	0.01 kW *2		19-30	υ ^w
	80	C101	Motor capacity	0 to 3600 kW, 9999 *3	0.1 kW *3	9999	135	
	81	C102	Number of motor poles	2, 4, 6, 8, 10, 12, 9999	0.1 KW *3	9999	135	
			· ·	0 to 500 A, 9999 *2	0.01 A *2			
	82	C125	Motor excitation current	0 to 3600 A, 9999 *3	0.1 A *3	9999	136	
	83	C104	Rated motor voltage	0 to 1000 V	0.1 V	200 V *7 400 V *8	- 136	
	84	C105	Rated motor frequency	10 to 400 Hz, 9999	0.01 Hz	9999	136	
	85	G201	Excitation current break point	0 to 400 Hz, 9999	0.01 Hz	9999	137	
stants	86	G202	Excitation current low-speed scaling factor	0 to 300%, 9999	0.1%	9999	137	
Motor constants	89	G932	Speed control gain (Advanced magnetic flux vector)	0 to 200%, 9999	0.1%	9999	135	
Motoi	90	C120	Motor constant (R1)	0 to 50 Ω, 9999 *2	0.001 Ω *2	9999	136	
				0 to 400 mΩ, 9999 *3	0.01 mΩ *3			
	91	C121	Motor constant (R2)	0 to 50 Ω, 9999 *2	0.001 Ω *2	9999	136]
			Motor constant (L1)/d-axis	0 to 400 mΩ, 9999 *3 0 to 6000mH, 9999 *2	0.01 mΩ *3 0.1 mH *2		1	
	92	C122	inductance (Ld)	0 to 400mH, 9999 *3	0.01 mH *3	9999	136	
	93	C123	Motor constant (L2)/q-axis	0 to 6000mH, 9999 *2	0.1 mH *2	9999	136	
			inductance (Lq)	0 to 400mH, 9999 *3	0.01 mH *3			
	94	C124	Motor constant (X)	0 to 100%, 9999	0.1% *2 0.01% *3	9999	136	
	95	C111	Online auto tuning selection	0 to 2	1	0	138	
	96	C110	Auto tuning setting/status	0, 1, 11, 101	1	0	136	\mid
ш	100	G040		0 to 590 Hz, 9999	0.01 Hz	9999	138	\mid
table 5 points V/F	101 102	G041 G042	V/F1 (first frequency voltage) V/F2 (second frequency)	0 to 1000 V 0 to 590 Hz, 9999	0.1 V 0.01 Hz	0 V 9999	138 138	
ints	102	G042 G043	V/F2 (second frequency) V/F2 (second frequency voltage)	0 to 1000 V	0.01 Hz	9999 0 V	138	
od	103	G043		0 to 590 Hz, 9999	0.1 V 0.01 Hz	9999	138	┼──┤
e 5	105	G045		0 to 1000 V	0.01 V	0 V	138	
tabl	106	G046		0 to 590 Hz, 9999	0.01 Hz	9999	138	
ust	107	G047		0 to 1000 V	0.1 V	0 V	138	
Adjust	108	G048		0 to 590 Hz, 9999	0.01 Hz	9999	138	
	109	G049	V/F5 (fifth frequency voltage)	0 to 1000 V	0.1 V	0 V	138	
	110	F030	Third acceleration/deceleration time	0 to 3600 s, 9999	0.1 s	9999	118	
su	111	F031	Third deceleration time	0 to 3600 s, 9999	0.1 s	9999	118	
tio	112	G020	-	0 to 30%, 9999	0.1%	9999	117	
oun	113	G021	Third V/F (base frequency)	0 to 590 Hz, 9999	0.01 Hz	9999	117	
rd f	114	H602		0 to 400%	0.1%	150%	121	
Third functions	115	H603	Third stall prevention operation frequency	0 to 590 Hz	0.01 Hz	0 Hz	121	
	116	M445		0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	125	
	117	N020	PU communication station number	0 to 31	1	0	139	\mid
ation	118	N021	PU communication speed	48, 96, 192, 384, 576, 768, 1152	1	192	139	
PU connector communication	119	-	PU communication stop bit length / data length	0, 1, 10, 11	1	1	139	
E E	113	N022	ç	0, 1		0	139	
CO	400	N023		0, 1		1	445	
tor	120	N024		0 to 2	1	2	139	\mid
nec	121	N025	-	0 to 10, 9999	1	1	139	┝──┤
con	122	N026	PU communication check time interval	0, 0.1 to 999.8 s, 9999	0.1 s	9999	139	
PU	123	N027	PU communication waiting time setting	0 to 150 ms, 9999	1 ms	9999	139	
	124	N028	PU communication CR/LF selection	0 to 2	1	1	139	

H		Pr. Name		Minimum	Initial value		Refer	ler g	
Function	Pr.	Pr. group	Name	Setting range	setting	FM	СА	to	Customer setting
Fu		9. o . p			increments		37	page	Se Cu
_	125	T022	Terminal 2 frequency setting gain	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	142	
		-	frequency <u>Simple</u>						
—	126	T042	Terminal 4 frequency setting gain frequency Simple	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	142	
			PID control automatic switchover						
	127	A612	frequency	0 to 590 Hz, 9999	0.01 Hz	9999		143	
PID operation	128	A610	PID action selection	0, 10, 11, 20, 21, 40 to 43, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 1000, 1001, 1010, 1011, 2000, 2001, 2010, 2011	1	0		143	
Q	129	A613	PID proportional band	0.1 to 1000%, 9999	0.1%	100%		143	
-	130	A614	PID integral time	0.1 to 3600 s, 9999	0.1 s	1 s		143	
-	131	A601	PID upper limit PID lower limit	0 to 100%, 9999	0.1%	9999		143	<u> </u>
-	132 133	A602 A611	PID lower limit PID action set point	0 to 100%, 9999 0 to 100%, 9999	0.1%	9999 9999		143 143	
-	133 134	A611 A615	PID action set point PID differential time	0.01 to 10 s, 9999	0.01% 0.01 s	9999		143 143	
	134	A015	Electronic bypass sequence selection	0, 1	1	0		143	
s	136	A001	MC switchover interlock time	0 to 100 s	0.1 s	1 s		144	
Bypass	137	A002	Start waiting time	0 to 100 s	0.1 s	0.5 s		144	
By	138	A003	Bypass selection at a fault	0, 1	1	0		144	
	139	A004	Automatic switchover frequency from inverter to bypass operation	0 to 60 Hz, 8888, 9999	0.01 Hz	9999		144	
h se	140	F200	Backlash acceleration stopping frequency	0 to 590 Hz	0.01 Hz	1 Hz	122		
klas sur	141	F201	Backlash acceleration stopping time	0 to 360 s	0.1 s	0.5 s		122	
Backlash measures	142	F202	Backlash deceleration stopping frequency	0 to 590 Hz	0.01 Hz	1 Hz		122	
	143	F203	Backlash deceleration stopping time	0 to 360 s	0.1 s	0.5 s		122	
_	144	M002	Speed setting switchover	0, 2, 4, 6, 8, 10, 12, 102, 104, 106, 108, 110, 112	1	4		124	
PU	145	E103		0 to 7	1	-		144	
_	147	F022	Acceleration/deceleration time switching frequency	0 to 590 Hz, 9999	0.01 Hz	9999		118	
Б	148	H620	Stall prevention level at 0 V input	0 to 400%	0.1%	150%		121	
icti	149	H621	Stall prevention level at 10 V input	0 to 400%	0.1%	200%		121	
lete	150	M460	Output current detection level	0 to 400%	0.1%	150%		144	
Current detection	151	M461	Output current detection signal delay time	0 to 10 s	0.1 s	0 s		144	
n	152	M462		0 to 400%	0.1%	5%		144	
	153	M463	Zero current detection time Voltage reduction selection during	0 to 10 s	0.01 s	0.5 s		144	
_	154	H631	stall prevention operation	0, 1, 10, 11	1	1		121	
_	155	T730	RT signal function validity condition selection	0, 10	1	0		145	
_	156	H501	Stall prevention operation selection	0 to 31, 100, 101	1	0		121	
_	157 158	M430 M301	OL signal output timer AM terminal function selection	0 to 25 s, 9999 1 to 3, 5 to 14, 17, 18, 21, 24, 32 to 34, 36, 46, 50, 52 to 54, 61, 62, 67, 70, 87 to 90, 91 to 98	0.1 s 1	0 s 1		121	
_	159	A005	Automatic switchover frequency range from bypass to inverter operation	0 to 10 Hz, 9999	0.01 Hz	9999		144	
—	160	E440	User group read selection Simple	0, 1, 9999	1	0		145	

Ę					Minimum	Initial	value	Refer	er
Function	Pr.	Pr. group	Name	Setting range	setting	FM	СА	to page	Customer setting
_	161	E200	Frequency setting/key lock operation selection	0, 1, 10, 11	1	0		145	
ic Is	162	A700	Automatic restart after instantaneous power failure selection	0 to 3, 10 to 13, 1000 to 1003, 1010 to 1013	1	0		128	
Automatic restart functions	163	A704	First cushion time for restart	0 to 20 s	0.1 s	0 s		128	
rest inct	164	A705	First cushion voltage for restart	0 to 100%	0.1%	0%		128	
	165	A710	Stall prevention operation level for restart	0 to 400%	0.1%	150%		128	
ent ction	166	M433	Output current detection signal retention time	0 to 10 s, 9999	0.1 s	0.1 s		144	
Current detection	167	M464	Output current detection operation selection	0, 1, 10, 11	1	0		144	
_	168	E000 E080							
-	169	E001 E081	Parameter for manufacturer setting. D	o not set.				•	
Cumulative monitor clear	170	M020	Watt-hour meter clear	0, 10, 9999	1	9999		125	
Cumu mon cle	171	M030	Operation hour meter clear	0, 9999	1	9999		125	
User group	172	E441	User group registered display/batch clear	9999, (0 to 16)	1	0		145	
Us	173	E442	User group registration	0 to 1999, 9999	1	9999		145	
	174	E443	User group clear	0 to 1999, 9999	1	9999		145	
	178	T700	STF terminal function selection	0 to 20, 22 to 28, 32, 37,42 to 48, 50 to 53, 57 to 60, 62, 64 to 74, 76 to 80, 85, 87 to 89, 92 to 96, 9999	1	60		146	
Input terminal function assignment	179	T701	STR terminal function selection	0 to 20, 22 to 28, 32, 37, 42 to 48, 50 to 53, 57 to 59, 61, 62, 64 to 74, 76 to 80, 85, 87 to 89, 92 to 96, 9999	1	61		146	
nct	180		RL terminal function selection		1	0		146	
l fu	181	T703	RM terminal function selection		1	1		146	
ina	182	T704	RH terminal function selection		1	2		146	
E L	183	T705	RT terminal function selection	0 to 20, 22 to 28, 32,	1	3		146	
it te	184	T706	AU terminal function selection	37, 42 to 48, 50 to 53,	1	4		146	
ndı	185	T707	JOG terminal function selection	57 to 59, 62, 64 to 74, 76 to 80, 85, 87 to 89,	1	5		146	
-	186	T708	CS terminal function selection	92 to 96, 9999	1	6		146	
	187	T709	MRS terminal function selection		1	24 *11*12 10 *12	3	146	
	188	T710	STOP terminal function selection	-	1	25		146	
	189	T711	RES terminal function selection		1	62		146	

u u					Minimum	Initial value	Refer	ler g
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM CA	to page	Customer setting
	190	M400	RUN terminal function selection	0 to 8, 10 to 20, 22, 25 to 28, 30 to 36, 38 to 57, 60, 61, 63,	1	0	147	
	191	M401	SU terminal function selection	64, 67, 68, 70, 79, 80, 84, 85, 90 to 99, 100 to 108, 110 to 116, 120, 122,	1	1	147	
	192	M402	IPF terminal function selection	125 to 128, 130 to 136, 138 to 157, 160, 161,	1	2 *11*13 9999 *12	- 147	
ignment	193	M403	OL terminal function selection	163, 164, 167, 168, 170, 179, 180, 184, 185, 190 to 199, 200 to 208, 211 to 213,	1	3	147	
ction ass	194	M404	FU terminal function selection	300 to 308, 311 to 313, 9999 *17*20	1	4	147	
Output terminal function assignment	195	M405	ABC1 terminal function selection	0 to 8, 10 to 20, 22, 25 to 28, 30 to 36, 38 to 57, 60, 61, 63, 64, 67, 68, 70, 79, 80, 84, 85, 90, 91, 94 to 99, 100 to 108, 110 to 116, 120, 122, 125 to 128, 130 to 136,	1	99	147	
	196	M406	ABC2 terminal function selection	138 to 157, 160, 161, 138 to 157, 160, 161, 163, 164, 167, 168, 170, 179, 180, 184, 185, 190, 191, 194 to 199, 200 to 208, 211 to 213, 300 to 308, 311 to 313, 9999 *17*20	1	9999	147	
Multi-speed setting	232 to 239	D308 to D315	Multi-speed setting (8 speed to 15 speed)	0 to 590 Hz, 9999	0.01 Hz	9999	118	
—	240	E601	Soft-PWM operation selection	0, 1	1	1	131	
—	241	M043	Analog input display unit switchover	0, 1	1	0	142	
-	242	T021	Terminal 1 added compensation amount (terminal 2)	0 to 100%	0.1%	100%	132	
—	243	T041	Terminal 1 added compensation amount (terminal 4)	0 to 100%	0.1%	75%	132	
—	244	H100	Cooling fan operation selection	0, 1, 101 to 105	1	1	148	
tion	245	G203	Rated slip	0 to 50%, 9999	0.01%	9999	148	
Slip compensation	246	G204	Slip compensation time constant	0.01 to 10 s	0.01 s	0.5 s	148	
com	247	G205	Constant-power range slip compensation selection	0, 9999	1	9999	148	
—	248	A006	Self power management selection	0 to 2	1	0	148	
_	249	H101	Earth (ground) fault detection at start	0, 1	1	0	148	
-	250	G106	Stop selection	0 to 100 s, 1000 to 1100 s, 8888, 9999	0.1 s	9999	148	
_	251	H200	Output phase loss protection selection	0, 1	1	1	149	

Ę						Initial value	Defer	er G
Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	FM CA	Refer to page	Customer setting
Frequency compensation function	252	T050	Override bias	0 to 200%	0.1%	50%	132	
Frequ compe fund	253	T051	Override gain	0 to 200%	0.1%	150%	132	
—	254	A007	Main circuit power OFF waiting time	1 to 3600 s, 9999	1 s	600 s	148	
Life check	255	E700	Life alarm status display	(0 to 15, 32 to 47)*11 (0, 1, 4, 5)*12 (0 to 63)*13	1	0	149	
c h	256 *15	E701	Inrush current limit circuit life display	(0 to 100%)	1%	100%	149	
Life	257	E702	Control circuit capacitor life display	(0 to 100%)	1%	100%	149	
_	258 *15	E703	Main circuit capacitor life display	(0 to 100%)	1%	100%	149	
	259 *15	E704	Main circuit capacitor life measuring	0, 1	1	0	149	
—	260 *19	E602	PWM frequency automatic switchover	0, 1	1	1	131	
d	261	A730	Power failure stop selection	0 to 2, 11, 12, 21, 22	1	0	150	
Power failure stop	262	A731	Subtracted frequency at deceleration start	0 to 20 Hz	0.01 Hz	3 Hz	150	
ilu	263	A732	Subtraction starting frequency	0 to 590 Hz, 9999	0.01 Hz	60 Hz 50 Hz	150	
r fa	264	A733	Power-failure deceleration time 1	0 to 3600 s	0.1 s	5 s	150	
ewe	265	A734	Power-failure deceleration time 2	0 to 3600 s, 9999	0.1 s	9999	150	
Рс	266	A735	Power failure deceleration time switchover frequency	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	150	
—	267	T001	Terminal 4 input selection	0 to 2	1	0	132	
_	268	M022	Monitor decimal digits selection	0, 1, 9999	1	9999	125	
_	269	E023	Parameter for manufacturer setting. De	o not set.		1		
—	270	A200	Stop-on contact/load torque high- speed frequency control selection	0 to 3, 11, 13	1	0	151	
e i ntrol	271	A201	High-speed setting maximum current	0 to 400%	0.1%	50%	151	
.oad torque high speed luency control	272	A202	Middle-speed setting minimum current	0 to 400%	0.1%	100%	151	
Load high quenc	273	A203	Current averaging range	0 to 590 Hz, 9999	0.01 Hz	9999	151	
Lc h frequ	274	A204	Current averaging filter time constant	1 to 4000	1	16	151	
Stop-on contact control	275	A205	Stop-on contact excitation current low-speed multiplying factor	0 to 300%, 9999	0.1%	9999	151	
Sto con con	276 *19	A206	PWM carrier frequency at stop-on contact	0 to 9, 9999 *2 0 to 4, 9999 *3	1	9999	151	
_	278	A100		0 to 30 Hz	0.01 Hz	3 Hz	152	\square
tion	279	A101		0 to 400%	0.1%	130%	152	
inct	280	A102		0 to 2 s	0.1 s	0.3 s	152	\mid
e fu	281	A103	Brake operation time at start	0 to 5 s	0.1 s	0.3 s	152	
Duc	282 283	A104 A105	Brake operation frequency	0 to 30 Hz	0.01 Hz	6 Hz	152	
Brake sequence function	284	A105	Brake operation time at stop Deceleration detection function colorition	0 to 5 s 0, 1	0.1 s 1	0.3 s 0	152 152	
ke		A107	selection Overspeed detection frequency					$\left - \right $
Bra	285	H416	Speed deviation excess detection	0 to 30 Hz, 9999	0.01 Hz	9999	152, 153	
	286	G400	frequency Droop gain	0 to 100%	0.1%	0%	153	$\left - \right $
Droop control	280	G400 G401	Droop filter time constant	0 to 1 s	0.170 0.01 s	0.3 s	153	+
Dr	288	G402		0 to 2, 10, 11, 20 to 22	1	0.0 3	153	$\left - \right $
_	289	M431	Inverter output terminal filter	5 to 50 ms, 9999	1 ms	9999	147	
_	290	M044	Monitor negative output selection	0 to 7	1	0	125	
	200				1 -	~		

tion	Pr		Minimum	Initial value	Refer	ler g		
Function	Pr.	Pr. group	Name	Setting range	setting	FM CA	to page	Customer setting
_	291	D100	Pulse train I/O selection	[FM Type] 0, 1, 10, 11, 20, 21, 100 [CA Type] 0, 1	1	0	154	
_	292	F500 A110	Automatic acceleration/deceleration	0, 1, 3, 5 to 8, 11	1	0	130	
_	293	F513	Acceleration/deceleration separate selection	0 to 2	1	0	130	
_	294	A785	UV avoidance voltage gain	0 to 200%	0.1%	100%	150	
-	295	E201	Frequency change increment amount setting	0, 0.01, 0.1, 1, 10	0.01	0	145	
vord ion	296	E410	Password lock level	0 to 6, 99, 100 to 106, 199, 9999	1	9999	155	
Password function	297	E411	Password lock/unlock	(0 to 5), 1000 to 9998, 9999	1	9999	155	
—	298	A711	Frequency search gain	0 to 32767, 9999	1	9999	136	
_	299	A701	Rotation direction detection selection at restarting	0, 1, 9999	1	0	128	
	313 *22	M410	DO0 output selection	0 to 8, 10 to 20, 22, 25 to 28, 30 to 36, 38 to 57, 60, 61, 63, 64, 68, 70, 79, 80,	1	9999	147	
CC-Link IE	314 *22	M411	DO1 output selection	84 to 99, 100 to 108, 110 to 116, 120, 122, 125 to 128, 130 to 136, 138 to 157, 160, 161,	1	9999	147	
	315 *22	M412	DO2 output selection	163, 164, 168, 170, 179, 180, 184 to 199, 200 to 208, 300 to 308, 9999 *17	1	9999	147	
	331 *18*19	N030	RS-485 communication station number	0 to 31 (0 to 247)	1	0	139	
	332 *18*19	N031	RS-485 communication speed	3, 6, 12, 24, 48, 96, 192, 384, 576, 768, 1152	1	96	139	
	333	-	RS-485 communication stop bit length / data length	0, 1, 10, 11	1	1		
	*18*19	N032	ç	0, 1	1	0	139	
		N033		0, 1	1	1		
Ę	334 *18*19	N034	RS-485 communication parity check selection	0 to 2	1	2	139	
licatic	335 *18*19	N035	RS-485 communication retry count	0 to 10, 9999	1	1	139	
RS-485 communication	336 *18*19	N036	RS-485 communication check time interval	0 to 999.8 s, 9999	0.1 s	0 s	139	
185 CO	337 *18*19	N037	RS-485 communication waiting time setting	0 to 150 ms, 9999	1 ms	9999	139	
RS-4	338	D010	Communication operation command source	0, 1	1	0	155	
	339	D011	Communication speed command source	0 to 2	1	0	155	
	340	D001	Communication startup mode selection	0 to 2, 10, 12	1	0	134	
	341 *18*19	N038	RS-485 communication CR/LF selection	0 to 2	1	1	139	
	342	N001	Communication EEPROM write selection	0, 1	1	0	139	
	343 *18*19	N080	Communication error count	-	1	0	139	

Ę					Minimum	Initial valu	e Refer	ner Ig
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM CA	to	Customer setting
		-	Communication reset selection/ Ready bit status selection/Reset selection when inverter errors cleared	0, 1, 100, 101, 1000, 1001, 1100, 1101	1	0	139	
-	349 *22	N010	Communication reset selection	0, 1	1	0	139	
		N240	Ready bit status selection	0, 1	1	0	139	
		N241	Reset selection when inverter errors cleared	0, 1	1	0	-	
	350 *9	A510	Stop position command selection	0, 1, 9999	1	9999	156	
	351 *9	A526	Orientation speed	0 to 30 Hz	0.01 Hz	2 Hz	156	
	352 *9	A527	Creep speed	0 to 10 Hz	0.01 Hz	0.5 Hz	156	
	353 *9	A528	Creep switchover position	0 to 16383	1	511	156	
	354 *9	A529	Position loop switchover position	0 to 8191	1	96	156	
ō	355 *9	A530	DC injection brake start position	0 to 255	1	5	156	
ntr	356 *9	A531	Internal stop position command	0 to 16383	1	0	156	
Orientation control	357 *9	A532	Orientation in-position zone	0 to 255	1	5	156	
ion	358 *9	A533	Servo torque selection	0 to 13	1	1	156	
Itat	359 *9	C141	Encoder rotation direction	0, 1, 100, 101	1	1	156	
ien	360 *9	A511	16-bit data selection	0 to 127	1	0	156	
ō	361 *9	A512	Position shift	0 to 16383	1	0	156	
	362 *9	A520	Orientation position loop gain	0.1 to 100	0.1	1	156	
	363 *9	A521	Completion signal output delay time	0 to 5 s	0.1 s	0.5 s	156	
	364 *9	A522	Encoder stop check time	0 to 5 s	0.1 s	0.5 s	156	
	365 *9	A523	Orientation limit	0 to 60 s, 9999	1 s	9999	156	
	366 *9	A524	Recheck time	0 to 5 s, 9999	0.1 s	9999	156	
×	367 *9	G240	Speed feedback range	0 to 590 Hz, 9999	0.01 Hz	9999	156	
bac	368 *9	G241	Feedback gain	0 to 100	0.1	1	156	
edl	369 *9	C140	Number of encoder pulses	0 to 4096	1	1024	156	
r fe	374	H800	Overspeed detection level	0 to 590 Hz, 9999	0.01 Hz	9999	156	
Encoder feedback	376 *9	C148	Encoder signal loss detection enable/disable selection	0, 1	1	0	157	
	380	F300	Acceleration S-pattern 1	0 to 50%	1%	0%	122	
S-pattern acceleration/ deceleration C	381	F301	Deceleration S-pattern 1	0 to 50%	1%	0%	122	
S-pa ccele	382	F302	Acceleration S-pattern 2	0 to 50%	1%	0%	122	
a de	383	F303	Deceleration S-pattern 2	0 to 50%	1%	0%	122	
ہے ہ	384	D101	Input pulse division scaling factor	0 to 250	1	0	154	
Pulse train input	385	D110	Frequency for zero input pulse	0 to 590 Hz	0.01 Hz	0 Hz	154	
□ + :=	386	D111	Frequency for maximum input pulse	0 to 590 Hz	0.01 Hz	60 Hz 50 H	lz 154	
	393 *9	A525	Orientation selection	0 to 2, 10 to 12	1	0	156	
2	394 *9	A540	Number of machine side gear teeth	0 to 32767	1	1	156	
Orientation control	395 *9	A541	Number of motor side gear teeth	0 to 32767	1	1	156	
nta	396 *9	A542	Orientation speed gain (P term)	0 to 1000	1	60	156	
)rie co	397 *9	A543	Orientation speed integral time	0 to 20 s	0.001 s	0.333 s	156	
0	398 *9	A544	Orientation speed gain (D term)	0 to 100	0.1	1	156	
	399 *9	A545	Orientation deceleration ratio	0 to 1000	1	20	156	
—	413 *9	M601	Encoder pulse division ratio	1 to 32767	1	1	169	
E	414	A800	PLC function operation selection	0 to 2, 11, 12	1	0	157	
PLC function	415	A801	Inverter operation lock mode setting	0, 1	1	0	157	
PL	416	A802	Pre-scale function selection	0 to 5	1	0	157	
fı	417	A803	Pre-scale setting value	0 to 32767	1	1	157	

c						Initial	value	Refer	ner
Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	FM	СА	to to page	Customer setting
	419	B000	Position command source selection	0 to 2, 10, 100, 110, 200, 210, 300, 310, 1110, 1310	1	0		158, 159	
	420	B001	Command pulse scaling factor numerator (electronic gear numerator)	1 to 32767	1	1		160	
	421	B002	Command pulse multiplication denominator (electronic gear denominator)	1 to 32767	1	1		160	
	422	B003	Position control gain	0 to 150 sec ⁻¹	1 sec ⁻¹	25 sec-	1	160	
	423	B004	Position feed forward gain	0 to 100%	1%	0%		160	
Position control	424	B005	Position command acceleration/ deceleration time constant	0 to 50 s	0.001 s	0 s		160	
ont	425	B006	Position feed forward command filter	0 to 5 s	0.001 s	0 s		160	
Ŭ	426	B007	In-position width	0 to 32767 pulse	1 pulse	100 pul	se	160	
tio	427	B008	Excessive level error	0 to 400K pulse, 9999	1K pulse	40K pulse		160	
osi	428	B009	Command pulse selection	0 to 5	1	0		159	
₽.	429	B010	Clear signal selection	0, 1	1	1		159	
	430	B011	Pulse monitor selection	0 to 5, 12, 13, 100 to 105, 112, 113, 1000 to 1005, 1012, 1013, 1100 to 1105, 1112, 1113, 2000 to 2005, 2012, 2013, 2100 to 2105, 2112, 2113, 3000 to 3005, 3012, 3013, 3100 to 3105, 3112, 3113, 8888, 9999	1	9999		159	
—	432 *9	D120	Pulse train torque command bias	0 to 400%	1%	0%		166	
_	433 *9	D121	Pulse train torque command gain	0 to 400%	1%	150%		166	
CC-Link IE	434 *16	N110	Network number (CC-Link IE)	0 to 255	1	0		139	
CC-Li	435 *16	N111	Station number (CC-Link IE)	0 to 255	1	0		139	
—	446	B012	Model position control gain	0 to 150 sec ⁻¹	1 sec ⁻¹	25 sec ⁻	1	160	

Ę					Minimum	Initial	value	Refer	er g
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM	CA	to page	Customer setting
	450	C200	Second applied motor	0, 1, 3 to 6, 13 to 16, 20, 23, 24, 30, 33, 34, 40, 43, 44, 50, 53, 54, 70, 73, 74, 330, 333, 334, 8093, 8094, 9090, 9093, 9094, 9999	1	9999		131	
	451 G300	Second motor control method selection	0 to 6, 10 to 14, 20, 100 to 106, 110 to 114, 9999	1	9999		135		
ş	453	C201	Second motor capacity	0.4 to 55 kW, 9999 *2 0 to 3600 kW, 9999 *3	0.01 kW *2 0.1 kW *3	9999		135	
ant	454	C202	Number of second motor poles	2, 4, 6, 8, 10, 12, 9999	1	9999		135	
nst	455	C225	Second motor excitation current	0 to 500 A, 9999 *2	0.01 A *2	9999		136	
S		0225	Second motor excitation current	0 to 3600 A, 9999 *3	0.1 A *3				
Second motor constants	456	C204	Rated second motor voltage	0 to 1000 V	0.1 V	200 V *7 400 V *8		136	
u p	457	C205	Rated second motor frequency	10 to 400 Hz, 9999	0.01 Hz	9999		136	
econ	458	C220	Second motor constant (R1)	0 to 50 Ω, 9999 *2	0.001 Ω *2	9999		136	
Ŵ				0 to 400 mΩ, 9999 *3	0.01 mΩ *3				
	450	0004	0	0 to 50 Ω, 9999 *2	0.001 Ω*2	0000			
	459	C221	Second motor constant (R2)	0 to 400 mΩ, 9999 *3	0.01 mΩ *3	9999		136	
	460	C222	Second motor constant (L1) / d-axis	0 to 6000mH, 9999 *2	0.1 mH *2	9999		136	
	460 C222 461 C223	0222	inductance (Ld)	0 to 400mH, 9999 *3	0.01 mH *3	5999		130	
		C223	Second motor constant (L2) / q-axis	0 to 6000mH, 9999 *2	0.1 mH *2	9999		136	
		inductance (Lq)	0 to 400mH, 9999 *3	0.01 mH *3					
	462	C224	Second motor constant (X)	0 to 100%, 9999	0.1% *2 0.01% *3	9999		136	
	463	C210	Second motor auto tuning setting/ status	0, 1, 11, 101	1	0		136	

Ę					Minimum	Initial value	Refer	er G
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM CA	to page	Customer setting
	464	B020	Digital position control sudden stop deceleration time	0 to 360 s	0.1 s	0 s	158	
	465	B021	First target position lower 4 digits	0 to 9999	1	0	158	
	466	B022		0 to 9999	1	0	158	
	467	B023	Second target position lower 4 digits	0 to 9999	1	0	158	
	468	B024	Second target position upper 4 digits	0 to 9999	1	0	158	
	469	B025	Third target position lower 4 digits	0 to 9999	1	0	158	
	470 471	B026 B027	Third target position upper 4 digits Fourth target position lower 4 digits	0 to 9999 0 to 9999	1	0	158	
	471	B027 B028	Fourth target position upper 4 digits	0 to 9999	1	0	158 158	
	472	B029	Fifth target position lower 4 digits	0 to 9999	1	0	158	
	474	B030	Fifth target position upper 4 digits	0 to 9999	1	0	158	
	475	B031	Sixth target position lower 4 digits	0 to 9999	1	0	158	
	476	B032	Sixth target position upper 4 digits	0 to 9999	1	0	158	
	477	B033	Seventh target position lower 4 digits	0 to 9999	1	0	158	
trol	478	B034	Seventh target position upper 4 digits	0 to 9999	1	0	158	
Simple position control	479	B035	Eighth target position lower 4 digits	0 to 9999	1	0	158	
o uo	480	B036	Eighth target position upper 4 digits	0 to 9999	1	0	158	
sitic	481	B037	Ninth target position lower 4 digits	0 to 9999	1	0	158	
söd	482	B038	Ninth target position upper 4 digits	0 to 9999	1	0	158	
ole	483	B039	Tenth target position lower 4 digits	0 to 9999	1	0	158	
imp	484	B040	Tenth target position upper 4 digits	0 to 9999	1	0	158	
S	485	B041	Eleventh target position lower 4 digits	0 to 9999	1	0	158	
	486	B042	Eleventh target position upper 4 digits	0 to 9999	1	0	158	
	487	B043	Twelfth target position lower 4 digits	0 to 9999	1	0	158	
	488	B044	Twelfth target position upper 4 digits	0 to 9999	1	0	158	
	489	B045	Thirteenth target position lower 4 digits	0 to 9999	1	0	158	
	490	B046	Thirteenth target position upper 4 digits	0 to 9999	1	0	158	
	491	B047	Fourteenth target position lower 4 digits	0 to 9999	1	0	158	
	492	B048	Fourteenth target position upper 4 digits	0 to 9999	1	0	158	
	493	B049	Fifteenth target position lower 4 digits	0 to 9999	1	0	158	
	494	B050	Fifteenth target position upper 4 digits	0 to 9999	1	0	158	
ut	495	M500	Remote output selection	0, 1, 10, 11	1	0	160	
Remote output	496	M501	Remote output data 1	0 to 4095	1	0	160	
Re 01	497	M502	Remote output data 2	0 to 4095	1	0	160	
_	498	A804	PLC function flash memory clear	0, 9696 (0 to 9999)	1	0	157	
_	500 *22	N011	Communication error execution waiting time	0 to 999.8 s	0.1 s	0 s	139	
_	501 *22	N012	Communication error occurrence count display	0	1	0	139	
_	502	N013	Stop mode selection at communication error	0 to 4, 11, 12	1	0	139	
Maintenance	503	E710	Maintenance timer 1	0 (1 to 9998)	1	0	161	
Mainte	504	E711	Maintenance timer 1 warning output set time	0 to 9998, 9999	1	9999	161	
—	505	M001	Speed setting reference	1 to 590 Hz	0.01 Hz	60 Hz 50 Hz	124	
-	506 *15	E705	Display estimated main circuit capacitor residual life	(0 to 100%)	1%	100%	149	

ч Ч	Б	Pr		Minimum	Initial value	Refer	ler g	
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM CA	to page	Customer setting
<u>_</u> 0	516	F400	S-pattern time at a start of acceleration	0.1 to 2.5 s	0.1 s	0.1 s	122	
S-pattern acceleration/ deceleration D	517	F401	S-pattern time at a completion of acceleration	0.1 to 2.5 s	0.1 s	0.1 s	122	
S-pa ccele	518	F402	S-pattern time at a start of deceleration	0.1 to 2.5 s	0.1 s	0.1 s	122	
de de	519	F403	S-pattern time at a completion of deceleration	0.1 to 2.5 s	0.1 s	0.1 s	122	
—	522	G105	Output stop frequency	0 to 590 Hz, 9999	0.01 Hz	9999	161	
—	539 *18*19	N002	MODBUS RTU communication check time interval	0 to 999.8 s, 9999	0.1 s	9999	139	
—	541 *22	N100	Frequency command sign selection	0, 1	1	0	139	
ß	547	N040	USB communication station number	0 to 31	1	0	161	
USB	548	N041	USB communication check time interval	0 to 999.8 s, 9999	0.1 s	9999	161	
ation	549 *18*19	N000	Protocol selection	0, 1	1	0	139	
Communication	550 *19	D012	NET mode operation command source selection	0, 1, 9999 *17	1	9999	155	
Com	551	D013	PU mode operation command source selection	1 to 3, 9999 *17	1	9999	155	
—	552	H429	Frequency jump range	0 to 30 Hz, 9999	0.01 Hz	9999	124	
PID control	553	A603	PID deviation limit	0 to 100%, 9999	0.1%	9999	143	
CO P	554	A604	PID signal operation selection	0 to 3, 10 to 13	1	0	143	
age tor	555	E720	Current average time	0.1 to 1 s	0.1 s	1 s	161	
t aver moni	556	E721	Data output mask time	0 to 20 s	0.1 s	0 s	161	
Current average value monitor	557	E722	Current average value monitor signal output reference current	0 to 500 A *2	0.01 A *2	Inverter rated current	161	
0-				0 to 3600 A *3	0.1 A *3	ourrent		
—	560	A712	Second frequency search gain	0 to 32767, 9999	1	9999	136	
—	561	H020	PTC thermistor protection level	0.5 to 30 kΩ, 9999	0.01 kΩ	9999	119	
-	563	M021	Energization time carrying-over times	(0 to 65535)	1	0	125	
_	564	M031	Operating time carrying-over times Second motor excitation current	(0 to 65535)	1	0	125	
_	565	G301	break point Second motor excitation current low-	0 to 400 Hz, 9999	0.01 Hz	9999	137	
-	566	G302	speed scaling factor	0 to 300%, 9999	0.1%	9999	137	
Second motor constants	569	G942	Second motor speed control gain	0 to 200%, 9999	0.1%	9999	135	
Multiple rating	570	E301	Multiple rating setting	0 to 3 *11*12 1, 2 *13	- 1	2	162	
	571	F103	Holding time at a start	0 to 10 s, 9999	0.1 s	9999	120	
_	573	A680 T052	4 mA input check selection	1 to 4, 9999	1	9999	162	
_	574	C211	Second motor online auto tuning	0 to 2	1	0	138	
-	575	A621	Output interruption detection time	0 to 3600 s, 9999	0.1 s	1 s	143	
PID control	576	A622	Output interruption detection level	0 to 590 Hz	0.01 Hz	0 Hz	143	
L O	577	A623	Output interruption cancel level	900 to 1100%	0.1%	1000%	143	

tion Br					Minimum	Initial value	Refer	ler g
Function	Pr.	Pr. group	Name	Setting range	setting	FM CA	to page	Customer setting
	592	A300	Traverse function selection	0 to 2	1	0	162	0
ion	593	A301	Maximum amplitude amount	0 to 25%	0.1%	10%	162	
Traverse function	594	A302	Amplitude compensation amount during deceleration	0 to 50%	0.1%	10%	162	
/erse	595	A303	Amplitude compensation amount during acceleration	0 to 50%	0.1%	10%	162	
Irav	596	A304	Amplitude acceleration time	0.1 to 3600 s	0.1 s	5 s	162	
	597	A305	Amplitude deceleration time	0.1 to 3600 s	0.1 s	5 s	162	
-	598	H102	Undervoltage level	175 to 215 VDC, 9999 *7 350 to 430 VDC, 9999 *8	0.1 V	9999	162	
_	599	T721	X10 terminal input selection	0, 1	1	0 *11*13 1 *12	123	
mal	600	H001	First free thermal reduction frequency 1	0 to 590 Hz, 9999	0.01 Hz	9999	119	
her ay	601	H002	First free thermal reduction ratio 1	1 to 100%	1%	100%	119	
Electronic thermal O/L relay	602	H003	First free thermal reduction frequency 2	0 to 590 Hz, 9999	0.01 Hz	9999	119	
õ	603	H004	First free thermal reduction ratio 2	1 to 100%	1%	100%	119	
Ele	604	H005	First free thermal reduction frequency 3	0 to 590 Hz, 9999	0.01 Hz	9999	119	
-	606	T722	Power failure stop external signal input selection	0, 1	1	1	150	
_	607	H006	Motor permissible load level	110 to 250%	1%	150%	119	
-	608 609	H016 A624	Second motor permissible load level PID set point/deviation input	110 to 250%, 9999 1 to 5	1%	9999 2	119 143	
PID control	610	A625	selection PID measured value input selection	1 to 5	1	3	143	
_	611	F003	Acceleration time at a restart	0 to 3600 s, 9999	0.1 s	9999	128	
_	617	G080	Reverse rotation excitation current low-speed scaling factor	0 to 300%, 9999	0.1%	9999	137	
٩	635 *9	M610	Cumulative pulse clear signal selection	0 to 3	1	0	159	
nulative monitor	636 *9	M611	Cumulative pulse division scaling factor	1 to 16384	1	1	159	
Cum pulse	637 *9	M612	Control terminal option-Cumulative pulse division scaling factor	1 to 16384	1	1	159	
_	638 *9	M613	Cumulative pulse storage	0 to 3	1	0	159	
	639	A108	Brake opening current selection	0, 1	1	0	152	
	640	A109	Brake operation frequency selection	0, 1	1	0	152	
	641	A130	Second brake sequence operation selection	0, 7, 8, 9999	1	0	152	
tio	642	A120	Second brake opening frequency	0 to 30 Hz	0.01 Hz	3 Hz	152	
func	643 644	A121 A122	Second brake opening current Second brake opening current	0 to 400% 0 to 2 s	0.1% 0.1 s	130% 0.3 s	152 152	
Brake sequence function	645	A123	detection time Second brake operation time at start	0 to 5 s	0.1 s	0.3 s	152	
ibe	646	A124	Second brake operation frequency	0 to 30 Hz	0.01 Hz	6 Hz	152	
s e	647	A125	Second brake operation time at stop	0 to 5 s	0.1 s	0.3 s	152	
Brak	648	A126	Second deceleration detection function selection	0, 1	1	0	152	
	650	A128	Second brake opening current selection	0, 1	1	0	152	
	651	A129	Second brake operation frequency selection	0, 1	1	0	152	
Speed smoothing control	653	G410	Speed smoothing control	0 to 200%	0.1%	0%	163	
Spe smoo con	654	G411	Speed smoothing cutoff frequency	0 to 120 Hz	0.01 Hz	20 Hz	163	

2		-			N41	Initial value	Defer	er J
Function	Pr.	Pr.	Name	Setting range	Minimum setting		Refer to	Customer setting
Fun		group		gg-	increments	FM CA	page	Cust set
on	655	M530	Analog remote output selection	0, 1, 10, 11	1	0	163	
amo	656	M531	Analog remote output 1	800 to 1200%	0.1%	1000%	163	
g re t fui	657	M532	Analog remote output 2	800 to 1200%	0.1%	1000%	163	
Analog remote output function	658	M533	Analog remote output 3	800 to 1200%	0.1%	1000%	163	
Ar	659	M534	Analog remote output 4	800 to 1200%	0.1%	1000%	163	
jnetic eration	660	G130	Increased magnetic excitation deceleration operation selection	0, 1	1	0	164	
Increased magnetic excitation deceleration	661	G131	Magnetic excitation increase rate	0 to 40%, 9999	0.1%	9999	164	
Increa	662	G132	Increased magnetic excitation current level	0 to 300%	0.1%	100%	164	
-	663	M060	Control circuit temperature signal output level	0 to 100°C	1°C	0°C	164	
-	665	G125	Regeneration avoidance frequency gain	0 to 200%	0.1%	100%	170	
_	668	A786	Power failure stop frequency gain	0 to 200%	0.1%	100%	150	
-	673 *19	G060	SF-PR slip amount adjustment operation selection	2, 4, 6, 9999	1	9999	164	
	674 *19	G061	SF-PR slip amount adjustment gain	0 to 500%	0.1%	100%	164	
-	675	A805	User parameter auto storage function selection	1, 9999	1	9999	157	
d	679	G420	Second droop gain	0 to 100%, 9999	0.1%	9999	153	
	680	G421	Second droop filter time constant	0 to 1 s, 9999	0.01 s	9999	153	
Second droop control	681	G422	Second droop function activation selection	0 to 2, 10, 11, 20 to 22, 9999	1	9999	153	
000	682	G423	Second droop break point gain	0.1 to 100%, 9999	0.1%	9999	153	
S	683	G424	Second droop break point torque	0.1 to 100%, 9999	0.1%	9999	153	
_	684	C000	Tuning data unit switchover	0, 1	1	0	136	
e	686	E712	Maintenance timer 2	0 (1 to 9998)	1	0	161	
nance	687	E713	Maintenance timer 2 warning output set time	0 to 9998, 9999	1	9999	161	
Maintei	688	E714	Maintenance timer 3	0 (1 to 9998)	1	0	161	
Mai	689	E715	Maintenance timer 3 warning output set time	0 to 9998, 9999	1	9999	161	
—	690	H881	Deceleration check time	0 to 3600 s, 9999	0.1 s	1 s	164	
mal	692	H011	Second free thermal reduction frequency 1	0 to 590 Hz, 9999	0.01 Hz	9999	119	
her ay	693	H012	Second free thermal reduction ratio 1	1 to 100%	1%	100%	119	
Electronic thermal O/L relay	694	H013	Second free thermal reduction frequency 2	0 to 590 Hz, 9999	0.01 Hz	9999	119	
Oct	695	H014	Second free thermal reduction ratio 2	1 to 100%	1%	100%	119	
Ele	696	H015	Second free thermal reduction frequency 3	0 to 590 Hz, 9999	0.01 Hz	9999	119	
—	699	T740	Input terminal filter	5 to 50 ms, 9999	1 ms	9999	146	

E					Minimum	Initial value	Refer	ler g
Function	Pr.	Pr. group	Name	Setting range	setting	FM CA	to page	Customer setting
	702 *19	C106	Maximum motor frequency	0 to 400 Hz, 9999	0.01 Hz	9999	136	
	706 *19	C130	Induced voltage constant (phi f)	9999	0.1 mV/ (rad/s)	9999	136	
	707	C107	Motor inertia (integer)		1	9999	136	
	711 *19	C131	Motor Ld decay ratio	Setting range Minmum setting increments FM CA P 0 to 400 Hz, 9999 0.01 Hz 9999 13 0 to 5000 mV/(rad/s), 9999 0.1 mV/ (rad/s) 9999 13 0 to 100%, 9999 0.1% 9999 13 0 to 100%, 9999 0.1% 9999 13 0 to 200%, 9999 0.1% 9999 13 0 to 200%, 9999 0.1% 9999 13 0 to 5000 µs, 10000 to 16000 µs, 9999 1 µs 9999 13 0 to 5000 mV/(rad/s), 9999 0.1% 9999 13 0 to 100%, 9999 0.1% 9999 13 0 to 5000 µs, 10000 to 16000 µs, 9999 0.1% 9999 13 0 to 6000 µs, 10000 to 16000 µs, 9999 1 µs 9999 13 0 to 7, 9999 1 9999 13 0 to 7, 9999 1 9999 13 0 to 7, 9999 1 9999 13 0 to 100%, 9999 0.1HZ 9999 13 0 to 7, 9999 1	136			
	712 *19	C132	Motor Lq decay ratio	0 to 100%, 9999	0.1%	9999	136	
	717 *19	C182	Starting resistance tuning compensation	-	0.1%	9999	136	
s	721 *19	C185	Starting magnetic pole position detection pulse width	16000 µs, 9999	1 µs	9999	136	
ant	724	C108	Motor inertia (exponent)		1	9999	136	
nst	725 *19	C133	Motor protection current level		-	9999	136	
Motor constants	738 *19	C230	Second motor induced voltage constant (phi f)	9999		9999	136	
Aot	739 *19	C231	Second motor Ld decay ratio	0 to 100%, 9999	0.1%	9999	136	
~	740 *19	C232	Second motor Lq decay ratio	0 to 100%, 9999	0.1%	9999	136	
	741 *19	C282	Second starting resistance tuning compensation	•	0.1%	9999	136	
	742 *19	C285	Second motor magnetic pole detection pulse width	16000 µs, 9999	•		136	
	743 *19	C206	Second motor maximum frequency	,			136	
	744	C207	Second motor inertia (integer)	10 to 999, 9999		9999	136	
	745	C208	Second motor inertia (exponent)	0 to 7, 9999	1	9999	136	
	746 *19	C233	Second motor protection current level	100 to 500%, 9999	0.1%	9999	136	
-	747 *19	G350	Second motor low-speed range torque characteristic selection	0, 9999	1	9999	165	
Į.	753	A650	Second PID action selection	51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 1000, 1001, 1010, 1011, 2000, 2001,	1	0	143	
PID control	754	A652	Second PID control automatic switchover frequency	0 to 590 Hz, 9999	0.01 Hz	9999	143	
e	755	A651	Second PID action set point	0 to 100%, 9999	0.01%	9999	143	
	756	A653	Second PID proportional band	0.1 to 1000%, 9999	0.1%	100%	143	
	757	A654	Second PID integral time	0.1 to 3600 s, 9999	0.1 s	1 s	143	
	758	A655	Second PID differential time	0.01 to 10 s, 9999	0.01 s	9999	143	
	759	A600	PID unit selection	0 to 43, 9999	1	9999	143	
	760	A616	Pre-charge fault selection	0, 1	1	0	165	
Б С	761	A617	Pre-charge ending level		0.1%	9999	165	
Icti	762	A618	Pre-charge ending time	· ·			165	
fun	763	A619	Pre-charge upper detection level				165	
.ge	764	A620	Pre-charge time limit	· ·			165	
har	765	A656	Second pre-charge fault selection				165	\mid
မှ	766	A657	Second pre-charge ending level				165	
PID pre-charge function	767 768	A658 A659	Second pre-charge ending time Second pre-charge upper detection				165 165	
			level	-				
	769	A660	Second pre-charge time limit				165	<u> </u>
on	774	M101	Operation panel monitor selection 1				125	
Monitor function	775	M102	Operation panel monitor selection 2	62, 64, 67, 71 to 75,			125	
	776	M103 A681	Operation panel monitor selection 3 4 mA input check operation				125	
	777	T053	frequency	U to 590 Hz, 9999	0.01 Hz	9999	162	
_	778	A682 T054	4 mA input check filter	0 to 10 s	0.01 s	0 s	162	

E					Minimum	Initial v	/alue	Refer	ler g
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM	СА	to page	Customer setting
_	779	N014	Operation frequency during communication error	0 to 590 Hz, 9999	0.01 Hz	9999		139	
-	788 *19	G250	Low speed range torque characteristic selection	0, 9999	1	9999		165	
_	791 *19	F070	Acceleration time in low-speed range	0 to 3600 s, 9999	0.1 s	9999		118	
—	792 *19	F071	Deceleration time in low-speed range	0 to 3600 s, 9999	0.1 s	9999		118	
—	799	M520	Pulse increment setting for output power	0.1, 1, 10, 100, 1000 kWh	0.1 kWh	1 kWh		165	
—	800	G200	Control method selection	0 to 6, 9 to 14, 20, 100 to 106, 109 to 114	1	20		135	
_	801	H704	Output limit level	0 to 400%, 9999	0.1%	9999		122	
—	802	G102	Pre-excitation selection	0, 1	1	0		119	
	803	G210	Constant output range torque characteristic selection	0 to 2, 10, 11	1	0		122, 166	
Torque command	804	D400	Torque command source selection	0 to 6	1	0		122, 166	
Tor	805	D401	Torque command value (RAM)	600 to 1400%	1%	1000%		122, 166	
	806	D402	Torque command value (RAM, EEPROM)	600 to 1400%	1%	1000%		122, 166	
nit	807	H410	Speed limit selection	0 to 2	1	0		166	
Speed limit	808	H411	Forward rotation speed limit/speed limit	0 to 400 Hz	0.01 Hz	60 Hz 🕴	50 Hz	166	
Spe	809	H412	Reverse rotation speed limit/reverse- side speed limit	0 to 400 Hz, 9999	0.01 Hz	9999		166	
	810	H700	Torque limit input method selection	0 to 2	1	0		122	
ij	811	D030	Set resolution switchover	0, 1, 10, 11	1	0	122, 124		
<u>i</u>	812	H701	Torque limit level (regeneration)	0 to 400%, 9999	0.1%	9999		122	
an	813	H702	Torque limit level (3rd quadrant)	0 to 400%, 9999	0.1%	9999		122	
Torque limit	814	H703	Torque limit level (4th quadrant)	0 to 400%, 9999	0.1%	9999		122	
F	815	H710	Torque limit level 2	0 to 400%, 9999	0.1%	9999		122	
	816	H720	Torque limit level during acceleration	0 to 400%, 9999	0.1%	9999		122	
	817	H721	Torque limit level during deceleration	0 to 400%, 9999	0.1%	9999		122	
Easy gain tuning	818	C112	Easy gain tuning response level setting	1 to 15	1	2		167	
Easy tun	819	C113	Easy gain tuning selection	0 to 2	1	0		167	
	820	G211	Speed control P gain 1	0 to 1000%	1%	60%		167	
	821	G212		0 to 20 s	0.001 s	0.333 s		167	
	822	T003		0 to 5 s, 9999	0.001 s	9999		132	
	823 *9 824	G215 G213	Torque control P gain 1 (current loop	0 to 0.1 s 0 to 500%	0.001 s 1%	0.001 s 100%		167 167	
_	825	G214	proportional gain) Torque control integral time 1	0 to 500 ms	0.1 ms	5 ms		167	
Ictio	826	T004		0 to 5 s, 9999	0.001 s	9999		132	
fun	827	G216	-	0 to 0.1 s	0.001 s	0 s		167	
ent	828	G224		0 to 1000%	1%	60%		168	
Adjustment function	829 *9	A546	Number of machine end encoder pulses	0 to 4096	1	9999		156	
Adjı	830	G311	Speed control P gain 2	0 to 1000%, 9999	1%	9999		167	
	831	G312		0 to 20 s, 9999	0.001 s	9999		167	
	832	T005		0 to 5 s, 9999	0.001 s	9999		132	
	833 *9	G315		0 to 0.1 s, 9999	0.001 s	9999		167	
	834	G313		0 to 500%, 9999	1%	9999		167	
	835	G314		0 to 500 ms, 9999	0.1 ms	9999		167	
	836	T006	Torque setting filter 2	0 to 5 s, 9999	0.001 s	9999		132	
	837	G316	Torque detection filter 2	0 to 0.1 s, 9999	0.001 s	9999		167	

Function	Pr.	Pr.						20
L		group	Name	Setting range	Minimum setting	FM CA	- Refer to	Customer setting
		group			increments		page	Cu: Se
	840	G230	Torque bias selection	0 to 3, 24, 25, 9999	1	9999	168	
	841	G231	Torque bias 1	600 to 1400%, 9999	1%	9999	168	
S	842	G232	Torque bias 2	600 to 1400%, 9999	1%	9999	168	
Torque bias	843	G233		600 to 1400%, 9999	1%	9999	168	
ənl	844	G234		0 to 5s, 9999	0.001 s	9999	168	
oro	845	G235		0 to 5s, 9999	0.01 s	9999	168	
	846	G236		0 to 10 V, 9999	0.1 V	9999	168	
_	847	G237	Fall-time torque bias terminal 1 bias	0 to 400%, 9999	1%	9999	168	
	848	G238	Fall-time torque bias terminal 1 gain	0 to 400%, 9999	1%	9999	168	
_	849	T007	Analog input offset adjustment	0 to 200%	0.1%	100%	132	
_	850	G103	Brake operation selection	0 to 2	1	0	119	
_	851 *9	C240	Control terminal option-Number of encoder pulses	0 to 4096	1	2048	156	
	852 *9	C241	Control terminal option-Encoder rotation direction	0, 1, 100, 101	1	1	156	
Ę	853 *9	H417	Speed deviation time	0 to 100 s	0.1 s	1 s	153	
tio	854	G217	Excitation ratio	0 to 100%	1%	100%	169	
Additional function	855 *9	C248	Control terminal option-Signal loss detection enable/disable selection	0, 1	1	0	157	
na	858	T040	Terminal 4 function assignment	0, 1, 4, 9999	1	0	169	
litic	859	C126	Torque current/Rated PM motor	0 to 500 A, 9999 *2	0.01 A *2	9999	136	
bbv	000	0120	current	0 to 3600 A, 9999 *3	0.1 A *3			
1	860	C226	Second motor torque current/Rated PM motor current	0 to 500 A, 9999 *2 0 to 3600 A, 9999 *3	0.01 A *2 0.1 A *3	9999	136	
	862 *9	C242	Encoder option selection	0, 1	1	0	156	
	863 *9	M600	Control terminal option-Encoder pulse division ratio	1 to 32767	1	1	169	
	864	M470	Torque detection	0 to 400%	0.1%	150%	169	
	865	M446	Low speed detection	0 to 590 Hz	0.01 Hz	1.5 Hz	125	
Indication function	866	M042	Torque monitoring reference	0 to 400%	0.1%	150%	127	
_	867	M321	AM output filter	0 to 5 s	0.01 s	0.01 s	171	
_	868		Terminal 1 function assignment	0 to 6, 9999	1	0	169	
_	869	M334		0 to 5 s	0.01 s	- 0.02 s	-	
_	870	M440	Speed detection hysteresis	0 to 5 Hz	0.01 Hz	0 Hz	125	
e Is	872 *15	H201	Input phase loss protection selection	0, 1	1	0	149	
ctiv	873 *9	H415	Speed limit	0 to 400 Hz	0.01 Hz	20 Hz	153	
Protective Functions	874	H730	OLT level setting	0 to 400%	0.1%	150%	122	
Pr. Fu	875	H030	Fault definition	0, 1	1	0	169	
—	876 *9	H022	Thermal protector input	0, 1	1	1	119	
Control system functions	877	G220	Speed feed forward control/model adaptive speed control selection	0 to 2	1	0	168	
sys on:	878	G221	Speed feed forward filter	0 to 1 s	0.01 s	0 s	168	
ol s	879	G222	Speed feed forward torque limit	0 to 400%	0.1%	150%	168	
fur	880	C114		0 to 200 times	0.1 times	7 times	168	
ပိ	881	G223	Speed feed forward gain	0 to 1000%	1%	0%	168	
nce	882	G120	Regeneration avoidance operation selection	0 to 2	1	0	170	
voida	883	G121	Regeneration avoidance operation level	300 to 1200 V	0.1V	DC380 V *7 DC760 V *8	170	
Regeneration avoidance function	884	G122	Regeneration avoidance at deceleration detection sensitivity	0 to 5	1	0	170	
nerat fui	885	G123	Regeneration avoidance compensation frequency limit value	0 to 590 Hz, 9999	0.01 Hz	6 Hz	170	
Rege	886	G124	Regeneration avoidance voltage gain	0 to 200%	0.1%	100%	170	

n					Minimum	Initial	value	Refer	Jer g
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM	CA	to page	Customer setting
Free parameters	888	E420	Free parameter 1	0 to 9999	1	9999		170	
Fr paran	889	E421	Free parameter 2	0 to 9999	1	9999		170	
	891	M023	Cumulative power monitor digit shifted times	0 to 4, 9999	1	9999		125, 170	
F	892	M200	Load factor	30 to 150%	0.1%	100%		170	
onitc	893	M201	Energy saving monitor reference (motor capacity)	0.1 to 55 kW *2 0 to 3600 kW *3	0.01 kW *2 0.1 kW *3	Inverter capacity		170	
Energy saving monitor	894	M202	Control selection during commercial	0 to 3	1	0	,	170	
avi	895	M203	power-supply operation Power saving rate reference value	0, 1, 9999	1	9999		170	
ν si			_					-	
rg.	896	M204	Power unit cost	0 to 500, 9999	0.01	9999		170	
ine	897	M205	Power saving monitor average time	0 to 1000 h, 9999	1 h	9999		170	
ш	898	M206	Power saving cumulative monitor clear	0, 1, 10, 9999	1	9999		170	
	899	M207	Operation time rate (estimated value)	0 to 100%, 9999	0.1%	9999		170	
	C0 (900) *10	M310	FM/CA terminal calibration	-	-	-		171	
	C1 (901) *10	M320	AM terminal calibration	-	-	-		171	
	C2 (902) *10	T200	Terminal 2 frequency setting bias frequency	0 to 590 Hz	0.01 Hz	0 Hz		142	
	C3 (902) *10	T201	Terminal 2 frequency setting bias	0 to 300%	0.1%	0%		142	
	125 (903) *10	T202	Terminal 2 frequency setting gain frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	142	
	C4 (903) *10	T203	Terminal 2 frequency setting gain	0 to 300%	0.1%	100%		142	
ameters	C5 (904) *10	T400	Terminal 4 frequency setting bias frequency	0 to 590 Hz	0.01 Hz	0 Hz		142	
Calibration param	C6 (904) *10	T401	Terminal 4 frequency setting bias	0 to 300%	0.1%	20%		142	
Calibra	126 (905) *10	T402	Terminal 4 frequency setting gain frequency	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	142	
	C7 (905) *10	T403	Terminal 4 frequency setting gain	0 to 300%	0.1%	100%		142	
	C12 (917) *10	T100	Terminal 1 bias frequency (speed)	0 to 590 Hz	0.01 Hz	0 Hz		142	
	C13 (917) *10	T101	Terminal 1 bias (speed)	0 to 300%	0.1%	0%		142	
	C14 (918) *10	T102	Terminal 1 gain frequency (speed)	0 to 590 Hz	0.01 Hz	60 Hz	50 Hz	142	
	C15 (918) *10	T103	Terminal 1 gain (speed)	0 to 300%	0.1%	100%		142	
	C16 (919) *10	T110	Terminal 1 bias command (torque/ magnetic flux)	0 to 400%	0.1%	0%		142	

u				0	Minimum	Initial value		Refer	ner g
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM	CA	to page	Customer setting
	C17 (919) *10	T111	Terminal 1 bias (torque/magnetic flux)	0 to 300%	0.1%	0%		142	
	C18 (920) *10	T112	Terminal 1 gain command (torque/ magnetic flux)	0 to 400%	0.1%	150%		142	
	C19 (920) *10	T113	Terminal 1 gain (torque/magnetic flux)	0 to 300%	0.1%	100%	1	142	
	C8 (930) *10	M330	Current output bias signal	0 to 100%	0.1%	-	0%	171	
	C9 (930) *10	M331	Current output bias current	0 to 100%	0.1%	-	0%	171	
	C10 (931) *10	M332	Current output gain signal	0 to 100%	0.1%	-	100%	171	
Calibration parameters	C11 (931) *10	M333	Current output gain current	0 to 100%	0.1%	-	100%	171	
tion par	C38 (932) *10	T410	Terminal 4 bias command (torque/ magnetic flux)	0 to 400%	0.1%	0%		142	
Calibrat	C39 (932) *10	T411	Terminal 4 bias (torque/magnetic flux)	0 to 300%	0.1%	20%		142	
	C40 (933) *10	T412	Terminal 4 gain command (torque/ magnetic flux)	0 to 400%	0.1%	150%		142	
	C41 (933) *10	T413	Terminal 4 gain (torque/magnetic flux)	0 to 300%	0.1%	100%		142	
	C42 (934) *10	A630	PID display bias coefficient	0 to 500, 9999	0.01	9999		143	
	C43 (934) *10	A631	PID display bias analog value	0 to 300%	0.1%	20%		143	
	C44 (935) *10	A632	PID display gain coefficient	0 to 500, 9999	0.01	9999		143	
	C45 (935) *10	A633	PID display gain analog value	0 to 300%	0.1%	100%		143	
_	977	E302	Input voltage mode selection	0, 1	1	0		171	
-	989	E490	Parameter copy alarm release	10 *2 100 *3	1	10 *2 100 *3		171	
PU	990	E104	PU buzzer control	0, 1	1	1		172	
₽.	991	E105	PU contrast adjustment	0 to 63	1	58		172	
Monitor function	992	M104	Operation panel setting dial push monitor selection	0 to 3, 5 to 14, 17 to 20, 22 to 36, 38 to 46, 50 to 57, 61, 62, 64, 67, 71 to 75, 87 to 98, 100	1	0		125	
Droop control	994	G403	Droop break point gain	0.1 to 100%, 9999	0.1%	9999		153	
<u> </u>	995	G404	Droop break point torque	0.1 to 100%	0.1%	100%		153	
_	997	H103	Fault initiation	0 to 255, 9999	1	9999		172	
_	998 *19	E430	PM parameter initialization Simple	0, 3003, 3103, 8009, 8109, 9009, 9109 1, 2, 10, 11, 12, 13,	1	0		241	
_	999	E431	Automatic parameter setting Simple	20, 21, 9999	1	9999		172	
-	1000	E108	Direct setting selection	0 to 2	1	0		172	

Ę					Minimum	Initial	value	Refer	ler g
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM	CA	to page	Customer setting
_	1002 *19	C150	Lq tuning target current adjustment coefficient	50 to 150%, 9999	0.1%	9999		136	
nal on	1003	G601	Notch filter frequency	0, 8 to 1250 Hz	1 Hz	0		173	
Additional function	1004	G602	Notch filter depth	0 to 3	1	0		173	
Ado	1005	G603	Notch filter width	0 to 3	1	0		173	
o k	1006	E020	Clock (year)	2000 to 2099	1	2000		173	
Clock function	1007	E021	Clock (month, day)	1/1 to 12/31	1	101		173	
fui	1008	E022	Clock (hour, minute)	0:00 to 23:59	1	0		173	
-	1015	A607	Integral stop selection at limited frequency	0 to 2, 10 to 12	1	0		143	
-	1016	H021	PTC thermistor protection detection time	0 to 60 s	1 s	0 s		119	
-	1018	M045	Monitor with sign selection	0, 9999	1	9999		125	
	1020	A900	Trace operation selection	0 to 4	1	0		174	
	1021	A901	Trace mode selection	0 to 2	1	0		174	
	1022	A902	Sampling cycle	0 to 9	1	2		174	
	1023	A903	Number of analog channels	1 to 8	1	4		174	
	1024	A904	Sampling auto start	0, 1	1	0		174	
	1025	A905	Trigger mode selection	0 to 4	1	0		174	
	1026	A906	Number of sampling before trigger	0 to 100%	1%	90%		174	
	1027	A910	Analog source selection (1ch)	1 to 2 E to 14		201		174	
	1028	A910 Analog source selection (1ch) 1 to 3, 5 to 14, 174 201 174 A911 Analog source selection (2ch) 1 to 20, 22 to 24, 174	174						
	1029	A912	Analog source selection (3ch)	32 to 36, 39 to 42, 46,		203		174	
	1030	A913	Analog source selection (4ch)	52 to 54, 61, 62, 64, 67, 71 to 75	1	204		174	
_	1031	A914	Analog source selection (5ch)	87 to 98, 201 to 213,		205		174	
race function	1032	A915	Analog source selection (6ch)	222 to 227, 230 to 232,		206		174	
nnc	1033	A916	Analog source selection (7ch)	235 to 238		207		174	
cef	1034	A917	Analog source selection (8ch)			208		174	
Tra	1035	A918	Analog trigger channel	1 to 8	1	1		174	
	1036	A919	Analog trigger operation selection	0, 1	1	0		174	
	1037	A920	Analog trigger level	600 to 1400	1	1000		174	
	1038	A930	Digital source selection (1ch)			1		174	
	1039	A931	Digital source selection (2ch)			2		174	
	1040	A932	Digital source selection (3ch)			3		174	
	1041	A933	Digital source selection (4ch)	1 to 255	1	4		174	
	1042	A934	Digital source selection (5ch)			5		174	
	1043	A935	Digital source selection (6ch)			6		174	
	1044	A936	Digital source selection (7ch)			7		174	
	1045	A937	Digital source selection (8ch)			8		174	
	1046	A938	Digital trigger channel	1 to 8	1	1		174	
	1047	A939	Digital trigger operation selection	0, 1	1	0		174	
-	1048	E106	Display-off waiting time	0 to 60 min	1 min	0 min		174	
—	1049	E110	USB host reset	0, 1	1	0		174	

u					Minimum	Initial value	Refer	er g
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM CA	to page	Customer setting
	1072	A310	DC brake judgment time for anti- sway control operation	0 to 10 s	0.1 s	3 s	174	
Anti-sway control	1073	A311	Anti-sway control operation selection	0, 1	1	0	174	
con	1074	A312	Anti-sway control frequency	0.05 to 3 Hz, 9999	0.001 Hz	1 Hz	174	
vay	1075	A313	Anti-sway control depth	0 to 3	1	0	174	
ti-sv	1076	A314	Anti-sway control width	0 to 3	1	0	174	
Ant	1077	A315	Rope length	0.1 to 50 m	0.1 m	1 m	174	
	1078	A316	Trolley weight	1 to 50000 kg	1 kg	1 kg	174	
	1079	A317	Load weight	1 to 50000 kg	1 kg	1 kg	174	
_	1103	F040	Deceleration time at emergency stop	0 to 3600 s	0.1 s	5 s	174	
Monitor function	1106	M050	Torque monitor filter	0 to 5 s, 9999	0.01 s	9999	125	
loni	1107	M051	Running speed monitor filter	0 to 5 s, 9999	0.01 s	9999	125	
	1108	M052	Excitation current monitor filter	0 to 5 s, 9999	0.01 s	9999	125	
	1113	H414	Speed limit method selection	0 to 2, 10, 9999	1	0	166	
_	1114	D403	Torque command reverse selection Speed control integral term clear	0, 1	1	1	166	
_	1115	G218	time Constant output range speed control	0 to 9998 ms	1 ms	0 s	167	
_	1116	G206	P gain compensation Speed control P gain 1 (per-unit	0 to 100%	0.1%	0%	167	
_	1117	G261	system) Speed control P gain 2 (per-unit	0 to 300, 9999	0.01	9999	167	
_	1118	G361	system) Model speed control gain (per-unit	0 to 300, 9999	0.01	9999	167	
_	1119	G262	system)	0 to 300, 9999	0.01	9999	168	
_	1121	G260	Per-unit speed control reference frequency	0 to 400 Hz	0.01 Hz	120 Hz *2 60 Hz *3	167, 168	
	1134	A605	PID upper limit manipulated value	0 to 100%	0.1%	100%	143	
	1135	A606	PID lower limit manipulated value	0 to 100%	0.1%	100%	143	
	1136	A670	Second PID display bias coefficient	0 to 500, 9999	0.01	9999	143	
	1137	A671	Second PID display bias analog value	0 to 300%	0.1%	20%	143	
	1138	A672	Second PID display gain coefficient	0 to 500, 9999	0.01	9999	143	
	1139	A673	Second PID display gain analog value	0 to 300%	0.1%	100%	143	
lo.	1140	A664	Second PID set point/deviation input selection	1 to 5	1	2	143	
PID control	1141	A665	Second PID measured value input selection	1 to 5	1	3	143	
DIG	1142	A640	Second PID unit selection	0 to 43, 9999	1	9999	143	
	1143	A641	Second PID upper limit	0 to 100%, 9999	0.1%	9999	143	
	1144	A642	Second PID lower limit	0 to 100%, 9999	0.1%	9999	143	
	1145	A643	Second PID deviation limit	0 to 100%, 9999	0.1%	9999	143	
	1146	A644	Second PID signal operation selection	0 to 3, 10 to 13	1	0	143	
	1147	A661	Second output interruption detection time Second output interruption detection	0 to 3600 s, 9999	0.1 s	1 s	143	
	1148	A662	level Second output interruption cancel	0 to 590 Hz	0.01 Hz	0 Hz	143	
	1149	A663	level	900 to 1100%	0.1%	1000%	143	
PLC function	1150 to 1199	A810 to A859	PLC function user parameters 1 to 50	0 to 65535	1	0	157	
_	1220 *23	B100	Target position/speed selection	0 to 2	1	0	-	

tion					Minimum	Initial	value	Defer	g G
Function	Pr.	Pr. group	Name	Setting range	Minimum setting	FM	СА	Refer to	Customer setting
Fui		group			increments	L IAI	CA	page	Cus se
	1221	B101	Start command edge detection selection	0, 1	1	0		158	
	1222	B120	First positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1223	B121	First positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1224	B122	First positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
	1225	B123	First positioning sub-function	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		158	
	1226	B124	Second positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1227	B125	Second positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1228	B126	Second positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
	1229	B127	Second positioning sub-function	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		158	
	1230	B128	Third positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1231	B129	Third positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1232	B130	Third positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
	1233	B131	Third positioning sub-function	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		158	
	1234	B132	Fourth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	
trol	1235	B133	Fourth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
ont	1236	B134	Fourth positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
Simple position control	1237	B135	Fourth positioning sub-function	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		158	
osi	1238	B136	Fifth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	
le p	1239	B137	Fifth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
imp	1240	B138	Fifth positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
S	1241	B139	Fifth positioning sub-function	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		158	
	1242	B140	Sixth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1243	B141	Sixth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1244	B142	Sixth positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
	1245	B143		0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		158	
	1246	B144	Seventh positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1247	B145	Seventh positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1248	B146	Seventh positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
	1249	B147	Seventh positioning sub-function	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		158	
	1250	B148	Eighth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1251	B149	Eighth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1252	B150	Eighth positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
	1253	B151	Eighth positioning sub-function	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		158	
	1254	B152	Ninth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	

n					Minimum	Initial	value	Refer	ler g
Function	Pr.	Pr. group	Name	Setting range	setting	FM	СА	to	Customer setting
Fu		group			increments		U.A.	page	Cu: Se
	1255	B153	Ninth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1256	B154	Ninth positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
	1257	B155	Ninth positioning sub-function	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		158	
	1258	B156	Tenth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1259	B157	Tenth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1260	B158	Tenth positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
	1261	B159	Tenth positioning sub-function	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		158	
	1262	B160	Eleventh positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1263	B161	Eleventh positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1264	B162	Eleventh positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
	1265	B163	Eleventh positioning sub-function	0 to 2, 10 to 12,	1	10		158	
	1266	B164	Twelfth positioning acceleration time	100 to 102, 110 to 112 0.01 to 360 s	0.01 s	5 s		158	
	1267	B165	Twelfth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1268	B166	Twelfth positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
	1269	B167	Twelfth positioning sub-function	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		158	
lo	1270	B168	Thirteenth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	
Simple position control	1271	B169	Thirteenth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
tion	1272	B170	Thirteenth positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
posi	1273	B171	Thirteenth positioning sub-function	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		158	
mple	1274	B172	Fourteenth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	
Si	1275	B173	Fourteenth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1276	B174	Fourteenth positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
	1277	B175	Fourteenth positioning sub-function	0 to 2, 10 to 12, 100 to 102, 110 to 112	1	10		158	
	1278	B176	Fifteenth positioning acceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1279	B177	Fifteenth positioning deceleration time	0.01 to 360 s	0.01 s	5 s		158	
	1280	B178	Fifteenth positioning dwell time	0 to 20000 ms	1 ms	0 ms		158	
	1281	B179	Fifteenth positioning sub-function	0, 2, 10, 12, 100, 102, 110, 112	1	10		158	
	1282	B180	Home position return method selection	0 to 6	1	4		158	
	1283	B181	Home position return speed	0 to 30 Hz	0.01 Hz	2 Hz		158	
	1284	B182	Home position return creep speed	0 to 10 Hz	0.01 Hz	0.5 Hz		158	
	1285	B183	Home position shift amount lower 4 digits	0 to 9999	1	0		158	
	1286	B184	Home position shift amount upper 4 digits	0 to 9999	1	0		158	
	1287	B185	Travel distance after proximity dog ON lower 4 digits	0 to 9999	1	2048		158	
	1288	B186	Travel distance after proximity dog ON upper 4 digits	0 to 9999	1	0		158	

n					Minimum	Initial value	Refer	ler g
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM CA	to page	Customer setting
	1289	B187	Home position return stopper torque	0 to 200%	0.1%	40%	158	
Introl	1290	B188	Home position return stopper waiting time	0 to 10 s	0.1 s	0.5 s	158	
Simple position control	1292	B190	Position control terminal input selection	0, 1	1	0	158	
ositi	1293	B191	Roll feeding mode selection	0, 1	1	0	158	
e bc	1294	B192	Position detection lower 4 digits	0 to 9999	1	0	160	
npl	1295	B193	Position detection upper 4 digits	0 to 9999	1	0	160	
Sil	1296	B194	Position detection selection	0 to 2	1	0	160	
	1297	B195	Position detection hysteresis width	0 to 32767	1	0	160	
-	1298	B013	Second position control gain	0 to 150 s ⁻¹	1 s ⁻¹	25 s ⁻¹	160	
_	1299	G108	Second pre-excitation selection	0, 1	1	0	119	
-	1300 to 1343	N500 to N543	Communication option parameters. For details, refer to the Instruction Ma	nual of the option.	1		1	
-	1348	G263	P/PI control switchover frequency	0 to 400 Hz	0.01 Hz	0 Hz	167	
-	1349	G264	Emergency stop operation selection	0, 1, 10, 11	1	0	174	
_	1350 to 1359	N550 to N559	Communication option parameters. For details, refer to the Instruction Ma	nual of the option.				
-	1410	A170	Starting times lower 4 digits	0 to 9999	1	0	175	
—	1411	A171	Starting times upper 4 digits	0 to 9999	1	0	175	
Ι	1412 *19	C135	Motor induced voltage constant (phi f) exponent	0 to 2, 9999	1	9999	136	
-	1413 *19	C235	Second motor induced voltage constant (phi f) exponent	0 to 2, 9999	1	9999	136	
	1480 *21	H520	Load characteristics measurement mode	0, 1 (2 to 5, 81 to 85)	1	0	176	
	1481 *21	H521	Load characteristics load reference 1	0 to 400%, 8888, 9999	0.1%	9999	176	
	1482 *21	H522	Load characteristics load reference 2	0 to 400%, 8888, 9999	0.1%	9999	176	
c	1483 *21	H523	Load characteristics load reference 3	0 to 400%, 8888, 9999	0.1%	9999	176	
etectio	1484 *21	H524	Load characteristics load reference 4	0 to 400%, 8888, 9999	0.1%	9999	176	
Load characteristics fault detection	1485 *21	H525	Load characteristics load reference 5	0 to 400%, 8888, 9999	0.1%	9999	176	
stics f	1486 *21	H526	Load characteristics maximum frequency	0 to 590 Hz	0.01 Hz	60 Hz 50 Hz	176	
racteri	1487 *21	H527	Load characteristics minimum frequency	0 to 590 Hz	0.01 Hz	6 Hz	176	
ıd cha	1488 *21	H531	Upper limit warning detection width	0 to 400%, 9999	0.1%	20%	176	
Loe	1489 *21	H532	Lower limit warning detection width	0 to 400%, 9999	0.1%	20%	176	
	1490 *21	H533	Upper limit fault detection width	0 to 400%, 9999	0.1%	9999	176	
	1491 *21	H534	Lower limit fault detection width	0 to 400%, 9999	0.1%	9999	176	
	1492 *21	H535	Load status detection signal delay time / load reference measurement waiting time	0 to 60 s	0.1 s	1 s	176	
—	1499	E415	Parameter for manufacturer setting. D	o not set.				

L L					Minimum	Initial	value	Refer	er g
Function	Pr.	Pr. group	Name	Setting range	setting increments	FM	CA	to page	Customer setting
ers	Pr.C	LR	Parameter clear	(0), 1	1	0		171	
Clear parameters	ALL	.CL	All parameter clear	(0), 1	1	0		171	
par	Err.	CL	Fault history clear	(0), 1	1	0		171	
—	Pr.C	PY	Parameter copy	(0), 1 to 3	1	0		171	
—	Pr.C	HG	Initial value change list	-	1	0		171	
—	IP	М	IPM initialization	0, 3003	1	0		241	
—	AU'	го	Automatic parameter setting	-	—	—		172	
—	Pr.M	٨D	Group parameter setting	(0), 1, 2	1	0		70	

Differ according to capacities. *1

6%: FR-A820-00077(0.75K) or lower, FR-A840-00038(0.75K) or lower

Hr. A820-00105(1.5K) to FR-A820-00250(3.7K), FR-A840-00052(1.5K) to FR-A840-00126(3.7K)
 FR-A820-00340(5.5K), FR-A820-00490(7.5K), FR-A840-00170(5.5K), FR-A840-00250(7.5K)

- 2%: FR-A820-00630(11K) to FR-A820-03160(55K), FR-A840-00310(11K) to FR-A840-01800(55K)
- 1%: FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher The setting range or initial value for the FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower.

*2 *3 The setting range or initial value for the FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher.

- *4
- The initial value for the FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower. The initial value for the FR-A820-00630(11K) or higher and FR-A840-00310(11K) or higher. *5
- Differ according to capacities. *6

 - 4%: FR-A820-00490(7.5K) or lower, FR-A840-00250(7.5K) or lower
 2%: FR-A820-00630(11K) to FR-A820-03160(55K), FR-A840-00310(11K) to FR-A840-01800(55K)
 1%: FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher
- *7 The value for the 200 V class.
- The value for the 400 V class. *8
- *9 The setting is available only when a vector control compatible option is installed. Refer to the Instruction Manual of each option for details.
- *10 The parameter number in parentheses is the one for use with the LCD operation panel and the parameter unit.
- The setting range or initial value for the standard model. *11
- *12 The setting range or initial value for the separated converter type *13
- The setting range or initial value for the IP55 compatible model The setting is available for the standard model only. *14
- *15 The setting is available only for standard models and IP55 compatible models.
- *16 The setting is available only for the FR-A800-GF or when a compatible plug-in option is installed.
- The setting is not available for the FR-A800-E. (Refer to **page 99**.) The setting is not available for the FR-A800-E. *17
- *18
- Parameter for manufacturer setting for the FR-A842-P. Do not set. The setting range differs for the FR-A842-P. (Refer to **page 99**.) *19
- *20
- *21 The setting is not available for the FR-A842-P.
- *22 The setting is available for the FR-A800-GN or FR-A800-GF, or when a compatible plug-in option is installed.
 *23 The setting is available when a compatible HMS network option is installed. For details, refer to the Instruction Manual (Detailed).

• List of parameters for the FR-A800-E Ethernet communication (by parameter number)

The following table shows the extended parameters for the FR-A800-E as compared to the standard inverters. Set the parameters according to the application.

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
	190	M400	RUN terminal function selection		1	0	147	
	191	M401	SU terminal function selection		1	1	147	
Output terminal function assignment	192	M402	IPF terminal function selection		1	2 *2 9999 *3	147	
imi ign	193	M403	OL terminal function selection	242, 342 *1	1	3	147	
ter ass	194	M404	FU terminal function selection		1	4	147	
put on a	195	M405	ABC1 terminal function selection		1	99	147	
Output terminal oction assignme	196	M406	ABC2 terminal function selection		1	9999	147	
un C	313	M410	DO0 output selection		1	9999	147	
-	314	M411	DO1 output selection	242, 342 *1	1	9999	147	
	315	M412	DO2 output selection		1	9999	147	
	550	D012	NET mode operation command source selection	0, 1, 5, 9999	1	9999	155	
	551	D013	PU mode operation command source selection	1 to 3, 5, 9999	1	9999	155	
	1124	N681	Station number in inverter-to- inverter link	0 to 5, 9999	1	9999	175	
	1125	N682	Number of inverters in inverter- to-inverter link system	2 to 6	1	2	175	
	1424	N650	Ethernet communication network number	1 to 239	1	1	139	
	1425	N651	Ethernet communication station number	1 to 120	1	1	139	
	1426	N641	Link speed and duplex mode selection	0 to 4	1	0	139	
	1427	N630	Ethernet function selection 1	502, 5000 to 5002, 5006 to 5008, 5010 to 5013, 9999, 45237	1	5001	139	
ation	1428	N631	Ethernet function selection 2	502, 5000 to 5002, 5006 to 5008, 5010 to 5013, 9999, 45237	1	45237	139	
communication	1429	N632	Ethernet function selection 3	502, 5000 to 5002, 5006 to 5008, 5010 to 5013, 9999, 45237	1	9999	139	
-	1431	N643	Ethernet signal loss detection function selection	0 to 3	1	0	139	
Ethernet	1432	N644	Ethernet communication check time interval	0 to 999.8 s, 9999	0.1 s	9999	139	
	1434	N600	Ethernet IP address 1	0 to 255	1	192	139	
	1435	N601	Ethernet IP address 2	0 to 255	1	168	139	
	1436	N602	Ethernet IP address 3	0 to 255	1	50	139	
	1437	N603	Ethernet IP address 4	0 to 255	1	1	139	
	1438	N610	Subnet mask 1	0 to 255	1	255	139	
	1439	N611	Subnet mask 2	0 to 255	1	255	139	
	1440 1441	N612	Subnet mask 3 Subnet mask 4	0 to 255	1	255	139	
	1441	N613 N660	Subnet mask 4 Ethernet IP filter address 1	0 to 255 0 to 255	1	0	139	
	1442	N661	Ethernet IP filter address 1	0 to 255	1	0	139 139	
	1443	N662	Ethernet IP filter address 3	0 to 255	1	0	139	
	1444	N663	Ethernet IP filter address 4	0 to 255	1	0	139	
			Ethernet IP filter address 2 range			-		
	1446	N664	specification Ethernet IP filter address 3 range	0 to 255, 9999	1	9999	139	
	1447	N665	specification Ethernet IP filter address 4 range	0 to 255, 9999	1	9999	139	
	1448	N666	specification	0 to 255, 9999	1	9999	139	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
	1449	N670	Ethernet command source selection IP address 1	0 to 255	1	0	139	
tion	1450	N671	Ethernet command source selection IP address 2	0 to 255	1	0	139	
Inica	1451	N672	Ethernet command source selection IP address 3	0 to 255	1	0	139	
communication	1452	N673	Ethernet command source selection IP address 4	0 to 255	1	0	139	
Ethernet co	1453	N674	Ethernet command source selection IP address 3 range specification	0 to 255, 9999	1	9999	139	
Ethe	1454	N675	Ethernet command source selection IP address 4 range specification	0 to 255, 9999	1	9999	139	
	1455	N642	Keepalive time	1 to 7200 s	1 s	3600 s	139	

Setting values not mentioned above are the same as those of the standard inverters. The initial value is for the standard models and the IP55 compatible models. The initial value is for the separated converter types. *1

*2 *3

• List of parameters for the FR-A842-P parallel operation (by parameter number)

The following table shows the extended parameters for the FR-A842-P as compared to the standard inverters.

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
nt	190	M400	RUN terminal function selection		1	0	147	
me	191	M401	SU terminal function selection		1	1	147	
gn ir	192	M402	IPF terminal function selection		1	9999	147	
t terminal assignment	193	M403	OL terminal function selection	227, 327 *1	1	3	147	
	194	M404	FU terminal function selection		1	4	147	
Output oction a	195	M405	ABC1 terminal function selection		1	99	147	
Outpu function	196	M406	ABC2 terminal function selection		1	9999	147	
tion	652	N092	Parallel operation communication check time	0, 0.1 to 120 s	0.1 s	1 s	163	
Parallel operation function	1001	E390	Parallel operation selection	1, 2, 100, 200, 300	1	100	173	

*1 Setting values not mentioned above are the same as those of the standard inverters.

• List of parameters for the FR-A800-GN CC-Link IE TSN communication (by parameter number)

The following table shows the extended parameters for the FR-A800-GN as compared to the standard inverters.

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Refer to page	Customer setting
	434	N700	IP address 1	0 to 255	1	0(192*1)	139	
	435	N701	IP address 2	0 to 255	1	0(168*1)	139	
	436	N702	IP address 3	0 to 255	1	0(50*1)	139	
	437	N703	IP address 4	0 to 255	1	0(2*1)	139	
	438	N710	Sub-network mask 1	0 to 255	1	0(255*1)	139	
	439	N711	Sub-network mask 2	0 to 255	1	0(255*1)	139	
Z	440	N712	Sub-network mask 3	0 to 255	1	0(255*1)	139	
TSN	441	N713	Sub-network mask 4	0 to 255	1	0	139	
CC-Link IE	1442	N760	Ethernet IP filter address 1	0 to 255	1	0	139	
-in	1443	N761	Ethernet IP filter address 2	0 to 255	1	0	139	
۲- د	1444	N762	Ethernet IP filter address 3	0 to 255	1	0	139	
C	1445	N763	Ethernet IP filter address 4	0 to 255	1	0	139	
	1446	N764	Ethernet IP filter address 2 range specification	0 to 255, 9999	1	9999	139	
	1447	N765	Ethernet IP filter address 3 range specification	0 to 255, 9999	1	9999	139	
	1448	N766	Ethernet IP filter address 4 range specification	0 to 255, 9999	1	9999	139	
	1459	N746	Clock source selection	0 to 2	1	0	139	

*1 The initial value after all parameters have been cleared.

• Inverter parameter list (by function group)

• E: Environment setting parameters

Parameters that set the inverter operation characteristics.

Pr.	Pr.	Name	Refer
group			to page
E000	168	Parameter for manufacturer setting. Do n	
E001	169	Parameter for manufacturer setting. Do n	
E020	1006	Clock (year)	173
E021	1007	Clock (month, day)	173
E022	1008	Clock (hour, minute)	173
E023 E080	269	Parameter for manufacturer setting. Do n	
E080 E081	168 169	Parameter for manufacturer setting. Do n Parameter for manufacturer setting. Do n	
E100	75	Reset selection	133
E100	75	Disconnected PU detection	133
E102	75	PU stop selection	133
E103	145	PU display language selection	144
E104	990	PU buzzer control	172
E105	991	PU contrast adjustment	172
E106	1048	Display-off waiting time	174
E107	75	Reset limit	133
E108	1000	Direct setting selection	172
E110	1049	USB host reset	174
E200	161	Frequency setting/key lock operation selection	145
E201	295	Frequency change increment amount setting	145
E300	30	Regenerative function selection	123
E301	570	Multiple rating setting	162
E302	977	Input voltage mode selection	171
E400	77	Parameter write selection	134
E410	296	Password lock level	155
E411	297	Password lock/unlock	155
E415	1499	Parameter for manufacturer setting. Do n	ot set.
E420	888	Free parameter 1	170
E421	889	Free parameter 2	170
E430	998 *7	PM parameter initialization Simple	241
E431	999	Automatic parameter setting Simple	172
E440	160	User group read selection Simple	145
E441	172	User group registered display/batch clear	145
E442	173	User group registration	145
E443	174	User group clear	145
E490	989	Parameter copy alarm release	171
E600	72 *7	PWM frequency selection	131
E601	240	Soft-PWM operation selection	131
E602	260 *7	PWM frequency automatic switchover	131
E700 E701	255 256 *4	Life alarm status display	149 149
E701	256 *4 257	Inrush current limit circuit life display Control circuit capacitor life display	149
E702	258 *4	Main circuit capacitor life display	149
E704	259 *4	Main circuit capacitor life measuring	149
E705	506	Display estimated main circuit capacitor residual life	149
E710	503	Maintenance timer 1	161
E711	504	Maintenance timer 1 warning output set time	161
E712	686	Maintenance timer 2	161
E713	687	Maintenance timer 2 warning output set time	161

Pr. group	Pr.	Name	Refer to page
E714	688	Maintenance timer 3	161
E715	689	Maintenance timer 3 warning output set time	161
E720	555	Current average time	161
E721	556	Data output mask time	161
E722	557	Current average value monitor signal output reference current	161

F: Setting of acceleration/deceleration time and acceleration/deceleration pattern

Parameters that set the motor acceleration/deceleration characteristics.

Pr.	Pr.	Name	Refer
group F000	20	Acceleration/deceleration reference	to page 118
		frequency	
F001	21	Acceleration/deceleration time increments	118
F002	16	Jog acceleration/deceleration time	120
F003	611	Acceleration time at a restart	128
F010	7	Acceleration time Simple	118
F011	8	Deceleration time Simple	118
F020	44	Second acceleration/deceleration time	118
F021	45	Second deceleration time	118
F022	147	Acceleration/deceleration time switching frequency	118
F030	110	Third acceleration/deceleration time	118
F031	111	Third deceleration time	118
F040	1103	Deceleration time at emergency stop	174
F070	791 *7	Acceleration time in low-speed range	118
F071	792 *7	Deceleration time in low-speed range	118
F100	29	Acceleration/deceleration pattern selection	122
F101	59	Remote function selection	129
F102	13	Starting frequency	120
F103	571	Holding time at a start	120
F200	140	Backlash acceleration stopping frequency	122
F201	141	Backlash acceleration stopping time	122
F202	142	Backlash deceleration stopping frequency	122
F203	143	Backlash deceleration stopping time	122
F300	380	Acceleration S-pattern 1	122
F301	381	Deceleration S-pattern 1	122
F302	382	Acceleration S-pattern 2	122
F303	383	Deceleration S-pattern 2	122
F400	516	S-pattern time at a start of acceleration	122
F401	517	S-pattern time at a completion of acceleration	122
F402	518	S-pattern time at a start of deceleration	122
F403	519	S-pattern time at a completion of deceleration	122
F500	292	Automatic acceleration/deceleration	130
F510	61	Reference current	130
F511	62	Reference value at acceleration	130
F512	63	Reference value at deceleration	130
F513	293	Acceleration/deceleration separate selection	130
F520	64	Starting frequency for elevator mode	130

D: Operation command and frequency command

Parameters that specify the inverter's command source, and parameters that set the motor driving frequency and torque.

Pr. group	Pr.	Name	Refer to page
D000	79	Operation mode selection Simple	134
D001	340	Communication startup mode selection	134
D010	338	Communication operation command source	155
D011	339	Communication speed command source	155
D012	550 *7	NET mode operation command source selection	155
D013	551	PU mode operation command source selection	155
D020	78	Reverse rotation prevention selection	134
D030	811	Set resolution switchover	122, 124
D100	291	Pulse train I/O selection	154
D101	384	Input pulse division scaling factor	154
D110	385	Frequency for zero input pulse	154
D111	386	Frequency for maximum input pulse	154
D120	432 *1	Pulse train torque command bias	166
D121	433 *1	Pulse train torque command gain	166
D200	15	Jog frequency	120
D300	28	Multi-speed input compensation selection	118
D301	4	Multi-speed setting (high speed)	118
D302	5	Multi-speed setting (middle speed)	118
D303	6	Multi-speed setting (low speed)	118
D304 to D307	24 to 27	Multi-speed setting (4 speed to 7 speed)	118
D308 to D315	232 to 239	Multi-speed setting (8 speed to 15 speed)	118
D400	804	Torque command source selection	122, 166
D401	805	Torque command value (RAM)	122, 166
D402	806	Torque command value (RAM, EEPROM)	122, 166
D403	1114	Torque command reverse selection	166

• H: Protective function parameter

Parameters to protect the motor and the inverter.

Pr. group	Pr.	Name	Refer to page
H000	9	Electronic thermal O/L relay Simple	119
H001	600	First free thermal reduction frequency 1	119
H002	601	First free thermal reduction ratio 1	119
H003	602	First free thermal reduction frequency 2	119
H004	603	First free thermal reduction ratio 2	119
H005	604	First free thermal reduction frequency 3	119
H006	607	Motor permissible load level	119
H010	51	Second electronic thermal O/L relay	119
H011	692	Second free thermal reduction frequency 1	119
H012	693	Second free thermal reduction ratio 1	119
H013	694	Second free thermal reduction frequency 2	119
H014	695	Second free thermal reduction ratio 2	119
H015	696	Second free thermal reduction frequency 3	119

Pr. groupPr.NameH016608Second motor permissible load levelH020561PTC thermistor protection levelH0211016PTC thermistor protection detection timeH022876 *1Thermal protector inputH030875Fault definitionH100244Cooling fan operation selectionH101249Earth (ground) fault detection at startH102598Undervoltage levelH103997Fault initiationH200251Output phase loss protection selectionH30065 *7Retry selectionH30167 *7Number of retries at fault occurrenceH30369 *7Retry waiting timeH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse- aide one and limit	Refer to page 119 119 119 119 119 149 169 148 162 172 149 149 130 130 130 130 117 117 117 166
H020561PTC thermistor protection levelH0211016PTC thermistor protection detection timeH022876 *1Thermal protector inputH030875Fault definitionH100244Cooling fan operation selectionH101249Earth (ground) fault detection at startH102598Undervoltage levelH103997Fault initiationH200251Output phase loss protection selectionH30065 *7Retry selectionH30167 *7Number of retries at fault occurrenceH30369 *7Retry waiting timeH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	119 119 119 169 148 162 172 149 130 130 117 117 117
H0211016PTC thermistor protection detection timeH022876 *1Thermal protector inputH030875Fault definitionH100244Cooling fan operation selectionH101249Earth (ground) fault detection at startH102598Undervoltage levelH103997Fault initiationH200251Output phase loss protection selectionH30065 *7Retry selectionH30167 *7Number of retries at fault occurrenceH30268 *7Retry waiting timeH30369 *7Retry count display eraseH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	119 119 169 148 148 162 172 149 130 130 130 117 117 117
H0211016timeH022876 *1Thermal protector inputH030875Fault definitionH100244Cooling fan operation selectionH101249Earth (ground) fault detection at startH102598Undervoltage levelH103997Fault initiationH200251Output phase loss protection selectionH30065 *7Retry selectionH30167 *7Number of retries at fault occurrenceH30268 *7Retry waiting timeH30369 *7Retry count display eraseH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	119 169 148 148 162 172 149 130 130 117 117 117
H030875Fault definitionH100244Cooling fan operation selectionH101249Earth (ground) fault detection at startH102598Undervoltage levelH103997Fault initiationH200251Output phase loss protection selectionH30167 *7Retry selectionH30268 *7Retry selectionH30369 *7Retry count display eraseH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	169 148 148 162 172 149 130 130 130 117 117 117
H100244Cooling fan operation selectionH101249Earth (ground) fault detection at startH102598Undervoltage levelH103997Fault initiationH200251Output phase loss protection selectionH201872 *4Input phase loss protection selectionH30065 *7Retry selectionH30167 *7Number of retries at fault occurrenceH30268 *7Retry count display eraseH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	148 148 162 172 149 130 130 130 130 117 117 117
H101249Earth (ground) fault detection at startH102598Undervoltage levelH103997Fault initiationH200251Output phase loss protection selectionH201872 *4Input phase loss protection selectionH30065 *7Retry selectionH30167 *7Number of retries at fault occurrenceH30268 *7Retry waiting timeH30369 *7Retry count display eraseH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	148 162 172 149 130 130 130 130 131 130 130 130 131 131 131 131 131 131 131 131 131 131 131
H102598Undervoltage levelH103997Fault initiationH200251Output phase loss protection selectionH201872 *4Input phase loss protection selectionH30065 *7Retry selectionH30167 *7Number of retries at fault occurrenceH30268 *7Retry waiting timeH30369 *7Retry count display eraseH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	162 172 149 130 130 130 130 130 130 130 131 130 130 130 131 131 131 131 131 117 117
H103997Fault initiationH200251Output phase loss protection selectionH201872 *4Input phase loss protection selectionH30065 *7Retry selectionH30167 *7Number of retries at fault occurrenceH30268 *7Retry waiting timeH30369 *7Retry count display eraseH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	172 149 149 130 130 130 130 130 130 130 131 130 130 130 117 117 117
H200251Output phase loss protection selectionH201872 *4Input phase loss protection selectionH30065 *7Retry selectionH30167 *7Number of retries at fault occurrenceH30268 *7Retry waiting timeH30369 *7Retry count display eraseH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	149 149 130 130 130 130 130 130 131 130 130 130 131 131 131 131 117 117 117
H201872 *4Input phase loss protection selectionH30065 *7Retry selectionH30167 *7Number of retries at fault occurrenceH30268 *7Retry waiting timeH30369 *7Retry count display eraseH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	149 130 130 130 130 130 117 117 117
H30065 *7Retry selectionH30167 *7Number of retries at fault occurrenceH30268 *7Retry waiting timeH30369 *7Retry count display eraseH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	130 130 130 130 130 130 117 117 117
H30167 *7Number of retries at fault occurrenceH30268 *7Retry waiting timeH30369 *7Retry count display eraseH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	130 130 130 117 117 117 117
H30268 *7Retry waiting timeH30369 *7Retry count display eraseH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	130 130 117 117 117 117
H30369 *7Retry count display eraseH4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	130 117 117 117 117
H4001Maximum frequency SimpleH4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	117 117 117
H4012Minimum frequency SimpleH40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	117 117
H40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	117
H40218High speed maximum frequencyH410807Speed limit selectionH411808Forward rotation speed limit/speed limitH412809Reverse rotation speed limit/reverse-	
H410 807 Speed limit selection H411 808 Forward rotation speed limit/speed limit H412 809 Reverse rotation speed limit/reverse-	
H411 808 Forward rotation speed limit/speed limit H412 809 Reverse rotation speed limit/reverse-	
H412 809 Reverse rotation speed limit/reverse-	166
	166
H414 1113 Speed limit method selection	166
H415 873 *1 Speed limit	153
H416 285 Speed deviation excess detection	152, 153
Human Frequency H417 853 *1 Speed deviation time	153
H420 31 Frequency jump 1A	124
H421 32 Frequency jump 1B	124
H422 33 Frequency jump 2A	124
H423 34 Frequency jump 2B	124
H424 35 Frequency jump 3A	124
H425 36 Frequency jump 3B	124
H429 552 Frequency jump range	124
H500 22 Stall prevention operation level (Torque	121
Imit level H501 156 Stall prevention operation selection	121
1480 Load characteristics measurement	
H520 *8 mode	176
H521 1481 *8 Load characteristics load reference 1	176
H522 1482 *8 Load characteristics load reference 2	176
H523 1483 *8 Load characteristics load reference 3	176
H524 1484 Load characteristics load reference 4	176
+8 H525 Load characteristics load reference 5	176
+8 H526 ¹⁴⁸⁶ Load characteristics maximum	176
*8 frequency	170
H527 *8 frequency	176
H531 1488 *8 Upper limit warning detection width	176
H532 1489 *8 Lower limit warning detection width	176
H533 1490 *8 Upper limit fault detection width	176
H534 1491 *8 Lower limit fault detection width	176

Pr.	_		Refer
group	Pr.	Name	to page
H535	1492 *8	Load status detection signal delay time / load reference measurement waiting time	176
H600	48	Second stall prevention operation level	121
H601	49	Second stall prevention operation frequency	121
H602	114	Third stall prevention operation level	121
H603	115	Third stall prevention operation frequency	121
H610	23	Stall prevention operation level compensation factor at double speed	121
H611	66	Stall prevention operation reduction starting frequency	121
H620	148	Stall prevention level at 0 V input	121
H621	149	Stall prevention level at 10 V input	121
H631	154	Voltage reduction selection during stall prevention operation	121
H700	810	Torque limit input method selection	122
H701	812	Torque limit level (regeneration)	122
H702	813	Torque limit level (3rd quadrant)	122
H703	814	Torque limit level (4th quadrant)	122
H704	801	Output limit level	122
H710	815	Torque limit level 2	122
H720	816	Torque limit level during acceleration	122
H721	817	Torque limit level during deceleration	122
H730	874	OLT level setting	122
H800	374	Overspeed detection level	156
H881	690	Deceleration check time	164

• M: Monitor display and monitor output signal

Parameters regarding the inverter's operating status. These parameters are used to set the monitors and output signals.

Pr. group	Pr.	Name	Refer to page
M000	37	Speed display	124
M001	505	Speed setting reference	124
M002	144	Speed setting switchover	124
M020	170	Watt-hour meter clear	125
M021	563	Energization time carrying-over times	125
M022	268	Monitor decimal digits selection	125
M023	891	Cumulative power monitor digit shifted times	125, 170
M030	171	Operation hour meter clear	125
M031	564	Operating time carrying-over times	125
M040	55	Frequency monitoring reference	127
M041	56	Current monitoring reference	127
M042	866	Torque monitoring reference	127
M043	241	Analog input display unit switchover	142
M044	290	Monitor negative output selection	125
M045	1018	Monitor with sign selection	125
M050	1106	Torque monitor filter	125
M051	1107	Running speed monitor filter	125
M052	1108	Excitation current monitor filter	125
M060	663	Control circuit temperature signal output level	164
M100	52	Operation panel main monitor selection	125
M101	774	Operation panel monitor selection 1	125
M102	775	Operation panel monitor selection 2	125
M103	776	Operation panel monitor selection 3	125
M104	992	Operation panel setting dial push monitor selection	125
M200	892	Load factor	170
M201	893	Energy saving monitor reference (motor capacity)	170

Pr. group	Pr.	Name	Refer to page
M202	894	Control selection during commercial	170
M203	895	power-supply operation Power saving rate reference value	170
M204	896	Power unit cost	170
M205	897	Power saving monitor average time	170
M206	898	Power saving cumulative monitor clear	170
M207	899	Operation time rate (estimated value)	170
M300	54	FM/CA terminal function selection	125
M301	158	AM terminal function selection	125
M310	C0 (900) *2	FM/CA terminal calibration	171
M320	C1 (901) *2	AM terminal calibration	171
M321	867	AM output filter	171
M330	C8 (930) *2	Current output bias signal	171
M331	C9 (930) *2	Current output bias current	171
M332	C10 (931) *2	Current output gain signal	171
M333	C11 (931) *2	Current output gain current	171
M334	869	Current output filter	171
M400	190	RUN terminal function selection	147
M401	191	SU terminal function selection	147
M402	192	IPF terminal function selection	147
M403	193	OL terminal function selection	147
M404	194	FU terminal function selection	147
M405 M406	195 196	ABC1 terminal function selection ABC2 terminal function selection	147 147
M400 M410	313 *9	DO0 output selection	147
M410 M411	314 *9	DO1 output selection	147
M412	315 *9	DO2 output selection	147
M430	157	OL signal output timer	121
M431	289	Inverter output terminal filter	147
M433	166	Output current detection signal retention time	144
M440	870	Speed detection hysteresis	125
M441	41	Up-to-frequency sensitivity	125
M442	42	Output frequency detection	125
M443	43	Output frequency detection for reverse rotation	125
M444	50	Second output frequency detection	125
M445	116	Third output frequency detection	125
M446	865	Low speed detection	125
M460	150	Output current detection level	144
M461	151	Output current detection signal delay time	144
M462	152	Zero current detection level	144
M463 M464	153 167	Zero current detection time Output current detection operation	144 144
M470	864	selection Torque detection	169
M470 M500	495	Remote output selection	169
M500	496	Remote output data 1	160
M502	497	Remote output data 2	160
M510	76	Fault code output selection	133

Pr. group	Pr.	Name	Refer to page
M520	799	Pulse increment setting for output power	165
M530	655	Analog remote output selection	163
M531	656	Analog remote output 1	163
M532	657	Analog remote output 2	163
M533	658	Analog remote output 3	163
M534	659	Analog remote output 4	163
M600	863 *1	Control terminal option-Encoder pulse division ratio	169
M601	413 *1	Encoder pulse division ratio	169
M610	635 *1	Cumulative pulse clear signal selection	159
M611	636 *1	Cumulative pulse division scaling factor	159
M612	637 *1	Control terminal option-Cumulative pulse division scaling factor	159
M613	638 *1	Cumulative pulse storage	159

• T: Multi-function input terminal parameters Parameters for the input terminals where inverter commands are received through.

Pr. group	Pr.	Name	Refer to page
T000	73	Analog input selection	132
T001	267	Terminal 4 input selection	132
T002	74	Input filter time constant	132
T003	822	Speed setting filter 1	132
T004	826	Torque setting filter 1	132
T005	832	Speed setting filter 2	132
T006	836	Torque setting filter 2	132
T007	849	Analog input offset adjustment	132
T010	868	Terminal 1 function assignment	169
T021	242	Terminal 1 added compensation amount (terminal 2)	132
T022	125	Terminal 2 frequency setting gain frequency Simple	142
T040	858	Terminal 4 function assignment	169
T041	243	Terminal 1 added compensation amount (terminal 4)	132
T042	126	Terminal 4 frequency setting gain frequency Simple	142
T050	252	Override bias	132
T051	253	Override gain	132
T052	573	4 mA input check selection	162
T053	777	4 mA input check operation frequency	162
T054	778	4 mA input check filter	162
T100	C12 (917) *2	Terminal 1 bias frequency (speed)	142
T101	C13 (917) *2	Terminal 1 bias (speed)	142
T102	C14 (918) *2	Terminal 1 gain frequency (speed)	142
T103	C15 (918) *2	Terminal 1 gain (speed)	142
T110	C16 (919) *2	Terminal 1 bias command (torque/ magnetic flux)	142
T111	C17 (919) *2	Terminal 1 bias (torque/magnetic flux)	142
		•	

Pr. group	Pr.	Name	Refer to page
T112	C18 (920) *2	Terminal 1 gain command (torque/ magnetic flux)	142
T113	C19 (920) *2	Terminal 1 gain (torque/magnetic flux)	142
T200	C2 (902) *2	Terminal 2 frequency setting bias frequency	142
T201	C3 (902) *2	Terminal 2 frequency setting bias	142
T202	125 (903) *2	Terminal 2 frequency setting gain frequency	142
T203	C4 (903) *2	Terminal 2 frequency setting gain	142
T400	C5 (904) *2	Terminal 4 frequency setting bias frequency	142
T401	C6 (904) *2	Terminal 4 frequency setting bias	142
T402	126 (905) *2	Terminal 4 frequency setting gain frequency	142
T403	C7 (905) *2	Terminal 4 frequency setting gain	142
T410	C38 (932) *2	Terminal 4 bias command (torque/ magnetic flux)	142
T411	C39 (932) *2	Terminal 4 bias (torque/magnetic flux)	142
T412	C40 (933) *2	Terminal 4 gain command (torque/ magnetic flux)	142
T413	C41 (933) *2	Terminal 4 gain (torque/magnetic flux)	142
T700	178	STF terminal function selection	146
T701	179	STR terminal function selection	146
T702	180	RL terminal function selection	146
T703	181	RM terminal function selection	146
T704 T705	182 183	RH terminal function selection RT terminal function selection	146 146
T705	184	AU terminal function selection	146
T707	185	JOG terminal function selection	146
T708	186	CS terminal function selection	146
T709	187	MRS terminal function selection	146
T710	188	STOP terminal function selection	146
T711	189	RES terminal function selection	146
T720	17	MRS input selection	121
T721	599	X10 terminal input selection	123
T722	606	Power failure stop external signal input selection	150
T730	155	RT signal function validity condition selection	145
T740	699	Input terminal filter	146

• C: Motor constant parameters Parameters for the applied motor setting.

Pr. group	Pr.	Name	Refer to page
C000	684	Tuning data unit switchover	136
C100	71	Applied motor	131
C101	80	Motor capacity	135
C102	81	Number of motor poles	135
C103	9	Rated motor current Simple	119
C104	83	Rated motor voltage	136
C105	84	Rated motor frequency	136
C106	702 *7	Maximum motor frequency	136
C107	707	Motor inertia (integer)	136
C108	724	Motor inertia (exponent)	136
C110	96	Auto tuning setting/status	136
C111	95	Online auto tuning selection	138
C112	818	Easy gain tuning response level setting	167
C113	819	Easy gain tuning selection	167
C114	880	Load inertia ratio	168
C120	90	Motor constant (R1)	136
C121	91	Motor constant (R2)	136
C122	92	Motor constant (L1)/d-axis inductance (Ld)	136
C123	93	Motor constant (L2)/q-axis inductance (Lq)	136
C124	94	Motor constant (X)	136
C125	82	Motor excitation current	136
C126	859	Torque current/Rated PM motor current	136
C130	706 *7	Induced voltage constant (phi f)	136
C131	711 *7	Motor Ld decay ratio	136
C132	712 *7	Motor Lq decay ratio	136
C133	725 *7	Motor protection current level	136
C135	1412 *7	Motor induced voltage constant (phi f) exponent	136
C140	369 *1	Number of encoder pulses	156
C141	359 *1	Encoder rotation direction	156
C148	376 *1	Encoder signal loss detection enable/ disable selection	157
C150	1002 *7	Lq tuning target current adjustment coefficient	136
C182	717 *7	Starting resistance tuning compensation	136
C185	721 *7	Starting magnetic pole position detection pulse width	136
C200	450	Second applied motor	131
C201	453	Second motor capacity	135
C202	454	Number of second motor poles	135
C203	51	Rated second motor current	119
C204	456	Rated second motor voltage	136
C205	457	Rated second motor frequency	136
C206	743 *7	Second motor maximum frequency	136
C207	744	Second motor inertia (integer)	136
C208	745	Second motor inertia (exponent) Second motor auto tuning setting/	136
C210 C211	463 574	status	136 138
C211 C220	574 458	Second motor online auto tuning Second motor constant (R1)	138 136
C220	458	Second motor constant (R1)	136
C2221	459	Second motor constant (L1) / d-axis	136
C223	461	inductance (Ld) Second motor constant (L2) / q-axis	136
C224	462	inductance (Lq) Second motor constant (X)	136
C225	455	Second motor excitation current	136
		Second motor torque current/Rated PM	
C226	860	motor current	136

Pr. group	Pr.	Name	Refer to page
C230	738 *7	Second motor induced voltage constant (phi f)	136
C231	739 *7	Second motor Ld decay ratio	136
C232	740 *7	Second motor Lq decay ratio	136
C233	746 *7	Second motor protection current level	136
C235	1413 *7	Second motor induced voltage constant (phi f) exponent	136
C240	851 *1	Control terminal option-Number of encoder pulses	156
C241	852 *1	Control terminal option-Encoder rotation direction	156
C242	862 *1	Encoder option selection	156
C248	855 *1	Control terminal option-Signal loss detection enable/disable selection	156
C282	741 *7	Second starting resistance tuning compensation	136
C285	742 *7	Second motor magnetic pole detection pulse width	136

• A: Application parameters Parameters to set a specific application.

Pr.			Refer
group	Pr.	Name	to page
A000	135	Electronic bypass sequence selection	144
A001	136	MC switchover interlock time	144
A002	137	Start waiting time	144
A003	138	Bypass selection at a fault	144
A004	139	Automatic switchover frequency from inverter to bypass operation	144
A005	159	Automatic switchover frequency range from bypass to inverter operation	144
A006	248	Self power management selection	148
A007	254	Main circuit power OFF waiting time	148
A100	278	Brake opening frequency	152
A101	279	Brake opening current	152
A102	280	Brake opening current detection time	152
A103	281	Brake operation time at start	152
A104	282	Brake operation frequency	152
A105	283	Brake operation time at stop	152
A106	284	Deceleration detection function selection	152
A107	285	Overspeed detection frequency	152, 153
A108	639	Brake opening current selection	152
A109	640	Brake operation frequency selection	152
A110	292	Automatic acceleration/deceleration	130
A120	642	Second brake opening frequency	152
A121	643	Second brake opening current	152
A122	644	Second brake opening current detection time	152
A123	645	Second brake operation time at start	152
A124	646	Second brake operation frequency	152
A125	647	Second brake operation time at stop	152
A126	648	Second deceleration detection function selection	152
A128	650	Second brake opening current selection	152
A129	651	Second brake operation frequency selection	152
A130	641	Second brake sequence operation selection	152
A170	1410	Starting times lower 4 digits	175
A171	1411	Starting times upper 4 digits	175
A200	270	Stop-on contact/load torque high-speed frequency control selection	151
A201	271	High-speed setting maximum current	151
A202	272	Middle-speed setting minimum current	151
A203	273	Current averaging range	151
A204	274	Current averaging filter time constant	151

Pr. group	Pr.	Name	Refer to page
A205	275	Stop-on contact excitation current low-	151
		speed multiplying factor PWM carrier frequency at stop-on	
A206	276 *7	contact	151
A300	592	Traverse function selection	162
A301	593	Maximum amplitude amount	162
A302	594	Amplitude compensation amount during deceleration	162
A303	595	Amplitude compensation amount	162
		during acceleration	
A304	596	Amplitude acceleration time	162
A305	597	Amplitude deceleration time DC brake judgment time for anti-sway	162
A310	1072	control operation	174
A311	1073	Anti-sway control operation selection	174
A312	1074	Anti-sway control frequency	174
A313	1075	Anti-sway control depth	174
A314	1076	Anti-sway control width	174
A315	1077	Rope length	174
A316	1078	Trolley weight	174
A317 A510	1079 350 ±1	Load weight	174
A510 A511	350 *1 360 *1	Stop position command selection 16-bit data selection	156 156
A511 A512	360 *1 361 *1	Position shift	156
A512 A520	361 *1 362 *1	Orientation position loop gain	156
A520	363 *1	Completion signal output delay time	156
A522	364 *1	Encoder stop check time	156
A523	365 *1	Orientation limit	156
A524	366 *1	Recheck time	156
A525	393 *1	Orientation selection	156
A526	351 *1	Orientation speed	156
A527	352 *1	Creep speed	156
A528	353 *1	Creep switchover position	156
A529	354 *1	Position loop switchover position	156
A530	355 *1	DC injection brake start position	156
A531 A532	356 *1 357 *1	Internal stop position command	156
A532	357 *1 358 *1	Orientation in-position zone	156 156
A535 A540	394 *1	Servo torque selection Number of machine side gear teeth	156
A541	395 *1	Number of motor side gear teeth	156
A542	396 *1	Orientation speed gain (P term)	156
A543	397 *1	Orientation speed integral time	156
A544	398 *1	Orientation speed gain (D term)	156
A545	399 *1	Orientation deceleration ratio	156
A546	829 *1	Number of machine end encoder pulses	156
A600	759	PID unit selection	143
A601	131	PID upper limit	143
A602	132	PID lower limit	143
A603	553	PID deviation limit	143
A604	554	PID signal operation selection	143
A605	1134	PID upper limit manipulated value	143
A606	1135	PID lower limit manipulated value	143
A607	1015	Integral stop selection at limited frequency	143
A610	128	PID action selection	143
A611	133	PID action set point	143
A612	127	PID control automatic switchover	143
A613	129	frequency PID proportional band	143
A614	129	PID integral time	143
A615	134	PID differential time	143
A616	760	Pre-charge fault selection	165
A617	761	Pre-charge ending level	165

Pr.	Pr.	Name	Refer
group A618	762	Pre-charge ending time	to page 165
A619	763	Pre-charge upper detection level	165
A620	764	Pre-charge time limit	165
A621	575	Output interruption detection time	143
A622	576	Output interruption detection level	143
A623	577	Output interruption cancel level	143
A624	609	PID set point/deviation input selection	143
A625	610	PID measured value input selection	143
A630	C42 (934) *2	PID display bias coefficient	143
A631	C43 (934) *2	PID display bias analog value	143
A632	C44 (935) *2	PID display gain coefficient	143
A633	C45 (935) *2	PID display gain analog value	143
A640	1142	Second PID unit selection	143
A641	1143	Second PID upper limit	143
A642	1144	Second PID lower limit	143
A643	1145	Second PID deviation limit	143
A644	1146	Second PID signal operation selection	143
A650	753	Second PID action selection	143
A650 A651	755	Second PID action selection	143
		Second PID control automatic	
A652	754	switchover frequency	143
A653	756	Second PID proportional band	143
A654	757	Second PID integral time	143
A655	758	Second PID differential time	143
A656	765	Second pre-charge fault selection	165
A657	766	Second pre-charge ending level	165
A658	767	Second pre-charge ending time	165
A659	768	Second pre-charge upper detection level	165
A660	769	Second pre-charge time limit	165
A661	1147	Second output interruption detection time	143
A662	1148	Second output interruption detection level	143
A663	1149	Second output interruption cancel level	143
A664	1140	Second PID set point/deviation input selection	143
A665	1141	Second PID measured value input selection	143
A670	1136	Second PID display bias coefficient	143
A671	1137	Second PID display bias analog value	143
A672	1138	Second PID display gain coefficient	143
A673	1139	Second PID display gain analog value	143
A680	573	4 mA input check selection	162
A681	777	4 mA input check operation frequency	162
A682	778	4 mA input check filter	162
A700	162	Automatic restart after instantaneous power failure selection	128
A701	299	Rotation direction detection selection at restarting	128
A702	57	Restart coasting time	128
A703	58	Restart cushion time	128
A704	163	First cushion time for restart	128
A/04			

Pr. group	Pr.	Name	Refer to page
A710	165	Stall prevention operation level for restart	128
A711	298	Frequency search gain	136
A712	560	Second frequency search gain	136
A730	261	Power failure stop selection	150
A731	262	Subtracted frequency at deceleration start	150
A732	263	Subtraction starting frequency	150
A733	264	Power-failure deceleration time 1	150
A734	265	Power-failure deceleration time 2	150
A735	266	Power failure deceleration time switchover frequency	150
A785	294	UV avoidance voltage gain	150
A786	668	Power failure stop frequency gain	150
A800	414	PLC function operation selection	157
A801	415	Inverter operation lock mode setting	157
A802	416	Pre-scale function selection	157
A803 A804	417 498	Pre-scale setting value	157 157
		PLC function flash memory clear User parameter auto storage function	-
A805	675	selection	157
A810 to	1150 to	PLC function user parameters 1 to 50	157
A859	1199		137
A900	1020	Trace operation selection	174
A901	1021	Trace mode selection	174
A902	1022	Sampling cycle	174
A903	1023	Number of analog channels	174
A904	1024	Sampling auto start	174
A905	1025	Trigger mode selection	174
A906	1026	Number of sampling before trigger	174
A910	1027	Analog source selection (1ch)	174
A911	1028	Analog source selection (2ch)	174
A912	1029	Analog source selection (3ch)	174
A913	1030	Analog source selection (4ch)	174
A914	1031	Analog source selection (5ch)	174
A915	1032	Analog source selection (6ch)	174
A916	1033	Analog source selection (7ch)	174
A917	1034	Analog source selection (8ch)	174
A918	1035	Analog trigger channel	174
A919	1036	Analog trigger operation selection	174
A920	1037	Analog trigger level	174
A930	1038	Digital source selection (1ch)	174
A931	1039	Digital source selection (2ch)	174
A932	1040	Digital source selection (3ch)	174
A933	1041	Digital source selection (4ch)	174
A934	1042	Digital source selection (5ch)	174
A935	1043	Digital source selection (6ch)	174
A936	1044	Digital source selection (7ch)	174
A937	1045	Digital source selection (8ch)	174
A938	1046	Digital trigger channel	174
A939	1047	Digital trigger operation selection	174

• **B: Position control parameters** Parameters for the position control setting.

Pr. group	Pr.	Name	Refer to page
B000	419	Position command source selection	158, 159
B001	420	Command pulse scaling factor numerator (electronic gear numerator)	160
B002	421	Command pulse multiplication denominator (electronic gear	160
B003	422	denominator) Position control gain	160
B004	423	Position feed forward gain	160
B005	424	Position command acceleration/ deceleration time constant	160
B006	425	Position feed forward command filter	160
B007	426	In-position width	160
B008	427	Excessive level error	160
B009	428	Command pulse selection	159
B010	429	Clear signal selection	159
B011	430	Pulse monitor selection	159
B012	446	Model position control gain	159
B013	1298	Second position control gain	160
B020	464	Digital position control sudden stop deceleration time	158
B021	465	First target position lower 4 digits	158
B022	466	First target position upper 4 digits	158
B023	467	Second target position lower 4 digits	158
B024	468	Second target position upper 4 digits	158
B025	469	Third target position lower 4 digits	158
B026	470	Third target position upper 4 digits	158
B027	471	Fourth target position lower 4 digits	158
B028	472	Fourth target position upper 4 digits	158
B029	473	Fifth target position lower 4 digits	158
B030	474	Fifth target position upper 4 digits	158
B031	475	Sixth target position lower 4 digits	158
B032	476	Sixth target position upper 4 digits	158
B033	477	Seventh target position lower 4 digits	158
B034	478	Seventh target position upper 4 digits	158
B035	479	Eighth target position lower 4 digits	158
B036	480	Eighth target position upper 4 digits	158
B037	481	Ninth target position lower 4 digits	158
B038	482	Ninth target position upper 4 digits	158
B039	483	Tenth target position lower 4 digits	158
B040	484	Tenth target position upper 4 digits	158
B041	485	Eleventh target position lower 4 digits	158
B042	486	Eleventh target position upper 4 digits	158
B043	487	Twelfth target position lower 4 digits	158
B044	488	Twelfth target position upper 4 digits	158
B045	489	Thirteenth target position lower 4 digits	158
B046	490	Thirteenth target position upper 4 digits	158
B047	491	Fourteenth target position lower 4 digits Fourteenth target position upper 4	158
B048 B049	492	digits	158
	493	Fifteenth target position lower 4 digits	158
B050	494	Fifteenth target position upper 4 digits	158
B100 B101	1220 1221	Parameter for manufacturer setting. Start command edge detection	158
B101	1221	selection First positioning acceleration time	158
B121 B122	1223 1224	First positioning deceleration time	158
		First positioning dwell time	158
B123	1225	First positioning sub-function	158
B124	1226	Second positioning acceleration time	158

Pr. group	Pr.	Name	Refer to page
B125	1227	Second positioning deceleration time	158
B126	1228	Second positioning dwell time	158
B127	1229	Second positioning sub-function	158
B128	1230	Third positioning acceleration time	158
B129	1231	Third positioning deceleration time	158
B130	1232	Third positioning dwell time	158
B131	1233	Third positioning sub-function	158
B132	1234	Fourth positioning acceleration time	158
B133	1235	Fourth positioning deceleration time	158
B134	1236	Fourth positioning dwell time	158
B135	1237	Fourth positioning sub-function	158
B136	1238	Fifth positioning acceleration time	158
B137	1239	Fifth positioning deceleration time	158
B138	1240	Fifth positioning dwell time	158
B139	1241	Fifth positioning sub-function	158
B140	1242	Sixth positioning acceleration time	158
B141	1243	Sixth positioning deceleration time	158
B142	1244	Sixth positioning dwell time	158
B143	1245	Sixth positioning sub-function	158
B144	1246	Seventh positioning acceleration time	158
B145	1247	Seventh positioning deceleration time	158
B146	1248	Seventh positioning dwell time	158
B147	1249	Seventh positioning sub-function	158
B148	1250	Eighth positioning acceleration time	158
B149	1251	Eighth positioning deceleration time	158
B150	1252	Eighth positioning dwell time	158
B151	1253	Eighth positioning sub-function	158
B152	1254	Ninth positioning acceleration time	158
B153	1255	Ninth positioning deceleration time	158
B154	1256	Ninth positioning dwell time	158
B155	1257	Ninth positioning sub-function	158
B156	1258	Tenth positioning acceleration time	158
B157	1259	Tenth positioning deceleration time	158
B158	1260	Tenth positioning dwell time	158
B159	1261	Tenth positioning sub-function	158
B160	1262	Eleventh positioning acceleration time	158
B161	1263	Eleventh positioning deceleration time	158
B162	1264	Eleventh positioning dwell time	158
B163	1265	Eleventh positioning sub-function	158
B164	1266	Twelfth positioning acceleration time	158
B165	1267	Twelfth positioning deceleration time	158
B166	1268	Twelfth positioning dwell time	158
B167	1269	Twelfth positioning sub-function	158
B168	1270	Thirteenth positioning acceleration time	158
B169	1271	Thirteenth positioning deceleration time	158
B170	1272	Thirteenth positioning dwell time	158
B171	1273	Thirteenth positioning sub-function	158
B172	1274	Fourteenth positioning acceleration time	158
B173	1275	Fourteenth positioning deceleration time	158

Pr.	Pr.	Name	Refer
group			to page
B174	1276	Fourteenth positioning dwell time	158
B175	1277	Fourteenth positioning sub-function	158
B176	1278	Fifteenth positioning acceleration time	158
B177	1279	Fifteenth positioning deceleration time	158
B178	1280	Fifteenth positioning dwell time	158
B179	1281	Fifteenth positioning sub-function	158
B180	1282	Home position return method selection	158
B181	1283	Home position return speed	158
B182	1284	Home position return creep speed	158
B183	1285	Home position shift amount lower 4 digits	158
B184	1286	Home position shift amount upper 4 digits	158
B185	1287	Travel distance after proximity dog ON lower 4 digits	158
B186	1288	Travel distance after proximity dog ON upper 4 digits	158
B187	1289	Home position return stopper torque	158
B188	1290	Home position return stopper waiting time	158
B190	1292	Position control terminal input selection	158
B191	1293	Roll feeding mode selection	158
B192	1294	Position detection lower 4 digits	160
B193	1295	Position detection upper 4 digits	160
B194	1296	Position detection selection	160
B195	1297	Position detection hysteresis width	160

N: Operation via communication and its settings

Parameters for communication operation. These parameters set the communication specifications and operation.

Pr. group	Pr.	Name	Refer to page
N000	549 *6*7	Protocol selection	139
N001	342	Communication EEPROM write selection	139
N002	539 *6*7	MODBUS RTU communication check time interval	139
N010	349 *9	Communication reset selection/Ready bit status selection	139
N011	500 *9	Communication error execution waiting time	139
N012	501 *9	Communication error occurrence count display	139
N013	502	Stop mode selection at communication error	139
N014	779	Operation frequency during communication error	139
N020	117	PU communication station number	139
N021	118	PU communication speed	139
N022	119	PU communication data length	139
N023	119	PU communication stop bit length	139
N024	120	PU communication parity check	139
N025	121	PU communication retry count	139
N026	122	PU communication check time interval	139
N027	123	PU communication waiting time setting	139
N028	124	PU communication CR/LF selection	139
N030	331 *6*7	RS-485 communication station number	139
N031	332 *6*7	RS-485 communication speed	139

_			
Pr. group	Pr.	Name	Refer to page
N032	333	Dill a survey is a time data law oth	400
NUJZ	*6*7	PU communication data length	139
N033	333	PU communication stop bit length	139
14055	*6*7	To communication stop bit length	155
N034	334	RS-485 communication parity check	139
1004	*6*7	selection	155
N035	335	RS-485 communication retry count	139
14055	*6*7	K3-485 communication retry count	139
N036	336	RS-485 communication check time	139
14030	*6*7	interval	155
N037	337	RS-485 communication waiting time	139
NU37	*6*7	setting	139
N038	341	RS-485 communication CR/LF selection	139
11030	*6*7		155
N040	547	USB communication station number	161
N041	548	USB communication check time interval	161
N080	343	Communication error count	139
NUOU	*6*7		139
N100	541 *9	Frequency command sign selection	139
N110	434 *5	Network number (CC-Link IE)	139
N111	435 *5	Station number (CC-Link IE)	139
N240	349 *9	Ready bit status selection	139
N241	349 *9	Reset selection when inverter errors	-
NEOO	,	cleared	
N500	1300		
to	to	Communication option parameters.	
N543, N550	1343, 1350	For details, refer to the Instruction Manua	al of the
		option.	
to	to		
N559	1359		

• G: Control Parameter

Parameters for motor control.

Pr. group	Pr.	Name	Refer to page
G000	0	Torque boost Simple	117
G001	3	Base frequency Simple	117
G002	19	Base frequency voltage	117
G003	14	Load pattern selection	120
G010	46	Second torque boost	117
G011	47	Second V/F (base frequency)	117
G020	112	Third torque boost	117
G021	113	Third V/F (base frequency)	117
G030	60	Energy saving control selection	129
G040	100	V/F1 (first frequency)	138
G041	101	V/F1 (first frequency voltage)	138
G042	102	V/F2 (second frequency)	138
G043	103	V/F2 (second frequency voltage)	138
G044	104	V/F3 (third frequency)	138
G045	105	V/F3 (third frequency voltage)	138
G046	106	V/F4 (fourth frequency)	138
G047	107	V/F4 (fourth frequency voltage)	138
G048	108	V/F5 (fifth frequency)	138
G049	109	V/F5 (fifth frequency voltage)	138
G060	673 *7	SF-PR slip amount adjustment operation selection	164
G061	674 *7	SF-PR slip amount adjustment gain	164
G080	617	Reverse rotation excitation current low- speed scaling factor	137
G100	10	DC injection brake operation frequency	119
G101	11	DC injection brake operation time	119
G102	802	Pre-excitation selection	119

Pr. group	Pr.	Name	Refer to page
G103	850	Brake operation selection	119
G105	522	Output stop frequency	161
G106	250	Stop selection	148
G107	70 *3	Special regenerative brake duty	123
G108	1299	Second pre-excitation selection	119
G110	12	DC injection brake operation voltage	119
G120	882	Regeneration avoidance operation selection	170
G121	883	Regeneration avoidance operation level	170
G122	884	Regeneration avoidance at deceleration detection sensitivity	170
G123	885	Regeneration avoidance compensation frequency limit value	170
G124	886	Regeneration avoidance voltage gain	170
G125	665	Regeneration avoidance frequency gain	170
G130	660	Increased magnetic excitation deceleration operation selection	164
G131	661	Magnetic excitation increase rate	164
G132	662	Increased magnetic excitation current level	164
G200	800	Control method selection	135
G201	85	Excitation current break point	137
G202	86	Excitation current low-speed scaling factor	137
G203	245	Rated slip	148
G204	246	Slip compensation time constant	148
G205	247	Constant-power range slip compensation selection	148
G206	1116	Constant output range speed control P gain compensation	167
G210	803	Constant output range torque characteristic selection	122, 166
G211	820	Speed control P gain 1	167
G212	821	Speed control integral time 1	167
G213	824	Torque control P gain 1 (current loop proportional gain)	167
G214	825	Torque control integral time 1 (current loop integral time)	167
G215	823 *1	Speed detection filter 1	167
G216	827	Torque detection filter 1	167
G217	854	Excitation ratio	169
G218	1115	Speed control integral term clear time	167
G220	877	Speed feed forward control/model adaptive speed control selection	168
G221	878	Speed feed forward filter	168
G222	879	Speed feed forward torque limit	168
G223	881	Speed feed forward gain	168
G224	828	Model speed control gain	168
G230 G231	840 841	Torque bias selection	168 168
G231 G232	841 842	Torque bias 1 Torque bias 2	168 168
G232 G233	843	Torque bias 3	168
G234	844	Torque bias filter	168
G235	845	Torque bias operation time	168
G236	846	Torque bias balance compensation	168
G237	847	Fall-time torque bias terminal 1 bias	168
G238	848	Fall-time torque bias terminal 1 gain	168
G240	367 *1	Speed feedback range	156
G241	368 *1	Feedback gain Low speed range torque characteristic	156
G250	788 *7	selection Per-unit speed control reference	165
G260	1121	frequency Speed control P gain 1 (per-unit	167, 168
G261	1117	system) Model speed control gain (per-unit	167
G262	1119	system)	168

Pr. group	Pr.	Name	Refer to page
G263	1348	P/PI control switchover frequency	167
G264	1349	Emergency stop operation selection	174
G300	451	Second motor control method selection	135
G301	565	Second motor excitation current break point	137
G302	566	Second motor excitation current low- speed scaling factor	137
G311	830	Speed control P gain 2	167
G312	831	Speed control integral time 2	167
G313	834	Torque control P gain 2	167
G314	835	Torque control integral time 2	167
G315	833 *1	Speed detection filter 2	167
G316	837	Torque detection filter 2	167
G350	747 *7	Second motor low-speed range torque characteristic selection	165
G361	1118	Speed control P gain 2 (per-unit system)	167
G400	286	Droop gain	153
G401	287	Droop filter time constant	153
G402	288	Droop function activation selection	153
G403	994	Droop break point gain	153
G404	995	Droop break point torque	153
G410	653	Speed smoothing control	163
G411	654	Speed smoothing cutoff frequency	163
G420	679	Second droop gain	153
G421	680	Second droop filter time constant	153
G422	681	Second droop function activation selection	153
G423	682	Second droop break point gain	153
G424	683	Second droop break point torque	153
G601	1003	Notch filter frequency	173
G602	1004	Notch filter depth	173
G603	1005	Notch filter width	173
G932	89	Speed control gain (Advanced magnetic flux vector)	135
G942	569	Second motor speed control gain	135

*1

The setting is available only when a plug-in option that supports the vector control is installed. Refer to the Instruction Manual of each option for details. The parameter number in parentheses is the one for use with the LCD operation panel and the parameter unit. *2

*3

Setting can be made only for the standard model. Setting can be made only for the standard model and the IP55 compatible model. *4

*5

*6 *7

model. The setting is available only for the FR-A800-GF or when a compatible plug-in option is installed. The setting is not available for the FR-A800-E. Parameter for manufacturer setting for the FR-A842-P. Do not set. The setting is not available for the FR-A842-P. The setting is available for the FR-A800-GN or FR-A800-GF, or when a compatible plug-in option is installed. *8 *9

List of parameters for the FR-A800-E Ethernet communication (by function group)

D: Operation command and frequency command

Parameters that specify the inverter's command source, and parameters that set the motor driving frequency and torque.

Pr. group	Pr.	Name	Refer to page
D012	550	NET mode operation command source selection	155
D013	551	PU mode operation command source selection	155

M: Monitor display and monitor output signal

Parameters regarding the inverter's operating status. These parameters are used to set the monitors and output signals.

Pr. group	Pr.	Name	Refer to page
M400	190	RUN terminal function selection	147
M401	191	SU terminal function selection	147
M402	192	IPF terminal function selection	147
M403	193	OL terminal function selection	147
M404	194	FU terminal function selection	147
M405	195	ABC1 terminal function selection	147
M406	196	ABC2 terminal function selection	147
M410	313	DO0 output selection	147
M411	314	DO1 output selection	147
M412	315	DO2 output selection	147

N: Operation via communication and its settings

Parameters for communication operation. These parameters set the communication specifications and operation.

Pr. group	Pr.	Name	Refer to page
N600	1434	Ethernet IP address 1	139
N601	1435	Ethernet IP address 2	139
N602	1436	Ethernet IP address 3	139
N603	1437	Ethernet IP address 4	139
N610	1438	Subnet mask 1	139
N611	1439	Subnet mask 2	139
N612	1440	Subnet mask 3	139
N613	1441	Subnet mask 4	139
N630	1427	Ethernet function selection 1	139
N631	1428	Ethernet function selection 2	139
N632	1429	Ethernet function selection 3	139
N641	1426	Link speed and duplex mode selection	139
N642	1455	Keepalive time	139
N643	1431	Ethernet signal loss detection function selection	139
N644	1432	Ethernet communication check time interval	139
N650	1424	Ethernet communication network number	139
N651	1425	Ethernet communication station number	139
N660	1442	Ethernet IP filter address 1	139
N661	1443	Ethernet IP filter address 2	139
N662	1444	Ethernet IP filter address 3	139
N663	1445	Ethernet IP filter address 4	139
N664	1446	Ethernet IP filter address 2 range specification	139
N665	1447	Ethernet IP filter address 3 range specification	139

Pr. group	Pr.	Name	Refer to page
N666	1448	Ethernet IP filter address 4 range specification	139
N670	1449	Ethernet command source selection IP address 1	139
N671	1450	Ethernet command source selection IP address 2	139
N672	1451	Ethernet command source selection IP address 3	139
N673	1452	Ethernet command source selection IP address 4	139
N674	1453	Ethernet command source selection IP address 3 range specification	139
N675	1454	Ethernet command source selection IP address 4 range specification	139
N681	1124	Station number in inverter-to-inverter link	175
N682	1125	Number of inverters in inverter-to- inverter link system	175

List of parameters for the FR-A842-P parallel operation (by function group)

• E: Environment setting parameters

Parameters that set the inverter operation characteristics.

Pr. group	Pr.	Name	Refer to page
E390	1001	Parallel operation selection	173

• M: Monitor display and monitor output signal

Parameters regarding the inverter's operating status. These parameters are used to set the monitors and output signals.

Pr. group	Pr.	Name	Refer to page
M400	190	RUN terminal function selection	147
M401	191	SU terminal function selection	147
M402	192	IPF terminal function selection	147
M403	193	OL terminal function selection	147
M404	194	FU terminal function selection	147
M405	195	ABC1 terminal function selection	147
M406	196	ABC2 terminal function selection	147

N: Operation via communication and its settings

Parameters for communication operation. These parameters set the communication specifications and operation.

Pr. group	Pr.	Name	Refer to page
N092	652	Parallel operation communication check time	163

• List of parameters for the FR-A800-GN CC-Link IE TSN communication (by function group)

N: Operation via communication and its settings

Parameters for communication operation. These parameters set the communication specifications and operation.

Pr. group	Pr.	Name	Refer to page
N700	434	IP address 1	139
N701	435	IP address 2	139
N702	436	IP address 3	139
N703	437	IP address 4	139
N710	438	Sub-network mask 1	139
N711	439	Sub-network mask 2	139
N712	440	Sub-network mask 3	139
N713	441	Sub-network mask 4	139
N760	1442	Ethernet IP filter address 1	139
N761	1443	Ethernet IP filter address 2	139
N762	1444	Ethernet IP filter address 3	139
N763	1445	Ethernet IP filter address 4	139
N764	1446	Ethernet IP filter address 2 range specification	139
N765	1447	Ethernet IP filter address 3 range specification	139
N766	1448	Ethernet IP filter address 4 range specification	139
N746	1459	Clock source selection	139

• Converter unit parameter list (by parameter number)

Set the necessary parameters to meet the load and operational specifications. Parameter setting, change and check can be performed from the operation panel (FR-DU08).

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	lnitial value	Customer setting
_	30	E300	Reset selection during power supply to main circuit	0, 100	1	0	
Automatic restart	57	A702	Restart selection	0, 9999	1	9999	
_	65 *1	H300	Retry selection	0 to 4	1	0	
`	67 *1	H301	Number of retries at fault occurrence	0 to 10, 101 to 110	1	0	
Retry	68 *1	H302	Retry waiting time	0.1 to 600 s	0.1 s	1 s	
Å	69 *1	H303	Retry count display erase	0	1	0	
		_	Reset selection/disconnected PU detection/ reset limit	14 to 17, 114 to 117		14	
_	75	E100	Reset selection		1		
	10	E101	Disconnected PU detection	0, 1		0	
		E107	Reset limit				
_	77	E400	Parameter write selection	1,2	1	2	
	117	N020	PU communication station number	0 to 31	1	0	
	118	N021	PU communication speed	48, 96, 192, 384, 576, 768, 1152	1	192	
	110	14021	PU communication stop bit length / data		1		
on		—	length	0, 10		1	
PU connector communication	119	N022	PU communication data length	0, 1	1	0	
nic		N023	PU communication stop bit length	0, 1	_	1	
nu	120	N024	PU communication parity check	0 to 2	1	2	
n n	121	N025	Number of PU communication retries	0 to 10, 9999	1	1	
чS	122	N026	PU communication check time interval	0, 0.1 to 999.8 s, 9999	0.1 s	9999	
123		N027	PU communication waiting time setting	0 to 150 ms, 9999	1 ms	9999	
	120	N028	PU communication CR/LF selection	0 to 2	1	1	
	161	E200		0,10	1	0	
_	101	E200	Key lock operation selection	1	0		
-	168 169	E080 E001 E081	Parameter for manufacturer setting.				
Cumulative monitor clear	170	M020	Watt-hour meter clear	0, 10, 9999	1	9999	
iinal n ent	178	T700	RDI terminal function selection		1	9999	
Input terminal function assignment	187	T709	OH terminal function selection	7, 62, 9999	1	7	
lnpu ft ass	189	T711	RES terminal function selection		1	62	
l ent	190	M400	RDB terminal function selection		1	111	
nina Jnm(191	M401	RDA terminal function selection	2, 8, 11, 17, 25, 26, 64, 68, 90, 94,	1	11	
err ssiç	192	M402	IPF terminal function selection	95, 98, 99, 102, 108, 111, 125, 126, 164, 168, 190, 194, 195,	1	2	
Output terminal function assignment	193	M403	RSO terminal function selection	198, 199, 206, 207, 209, 210, 214, 227*2, 306, 307, 309, 310,	1	209	
Out	194	M404	FAN terminal function selection	327*2, 9999	1	25	
fun	195	M405	ABC1 terminal function selection		1	99	
_	248	A006	Self power management selection	0 to 2	1	0	
~	255	E700	Life alarm status display	(0 to 15)	1	0	1
Life check	256	E700	Inrush current limit circuit life display	(0 to 100%)	1%	100%	
μĽ	257	E701	Control circuit capacitor life display	(0 to 100%)	1%	100%	ł
0							

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Customer setting
—	261	A730	Power failure stop selection	0, 1, 2, 21, 22	1	0	
—	268	M022	Monitor decimal digits selection	0, 1, 9999	1	9999	
—	269	E023	Parameter for manufacturer setting. Do not se	ət.			
—	290	M044	Monitor negative output selection	0, 2, 4, 6	1	0	
Password function	296	E410	Password lock level	0 to 3, 5, 6, 100 to 103, 105, 106, 9999	1	9999	
Pass func	297	E411	Password lock/unlock	(0 to 5), 1000 to 9998, 9999	1	9999	
	331 *1	N030	RS-485 communication station number	0, 31 (0, 247)	1	0	
-	332 *1	N031	RS-485 communication speed	3, 6, 12, 24, 48, 96, 192, 384, 576, 768, 1152	1	96	
ation	333 *1	_	RS-485 communication stop bit length / data length	0, 1, 10, 11	1	1	
lice	333 *1	N032	RS-485 communication data length	0, 1	1	0	
un		N033	RS-485 communication stop bit length	0, 1	1	1	
RS-485 communication	334 *1	N034	RS-485 communication parity check selection	0 to 2	1	2	
с 2	335 *1	N035	RS-485 communication retry count	0 to 10, 9999	1	1	
48	336 *1	N036	RS-485 communication check time interval	0 to 999.8 s, 9999	0.1 s	0 s	
Ś	337 *1	N037	RS-485 communication waiting time setting	0 to 150 ms, 9999	1 ms	9999	
-	341 *1	N038	RS-485 communication CR/LF selection	0 to 2	1	1	
-	342	N001	Communication EEPROM write selection	0, 1	1	0	
	343 *1	N080	Communication error count	-	1	0	
Maintenance	503	E710	Maintenance timer 1	0 (1 to 9998)	1	0	
Mainte	504 E		Maintenance timer 1 warning output set time	0 to 9998, 9999	1	9999	
—	539 *1	N002	MODBUS RTU communication check time interval	0 to 999.8 s, 9999	0.1 s	9999	
Communication	549 *1	N000	Protocol selection	0, 1	1	0	
-	563	M021	Energization time carrying-over times	(0 to 65535)	1	0	
—	598	H102	Undervoltage level	350 to 430 V, 9999	0.1 V	9999	
—	652 *2	N092	Parallel operation communication check time	0, 0.1 to 120 s, 9999	0.1 s	1 s	
—	663	M060	Control circuit temperature signal output level	0 to 100°C	1°C	0°C	
e	686	E712	Maintenance timer 2	0 (1 to 9998)	1	0	
enan	687	E713	Maintenance timer 2 warning output set time	0 to 9998, 9999	1	9999	
Maintenance	688	688 E714 Maintenance timer 3 0 (1 to 9998)		0 (1 to 9998)	1	0	
Σ	689	E715	Maintenance timer 3 warning output set time	0 to 9998, 9999	1	9999	
Monitor function	774	M101	Operation panel monitor selection 1	0 0 40 00 05 40 41	1	9999	
onit	775	M102	Operation panel monitor selection 2	2, 8, 13, 20, 25, 43, 44, 55, 62, 98, 9999	1	9999	
	776	M103	Operation panel monitor selection 3		1	9999	
Protective Functions	872	H201	Input phase loss protection selection	0, 1	1	0	
_	876	T723	OH input selection	0 to 2	1	0	
—	876	T723	OH input selection	0 to 2	1	0	

Function	Pr.	Pr. group	Name	Setting range	Minimum setting increments	Initial value	Customer setting
Free parameters	888 E420 F		Free parameter 1	0 to 9999	1	9999	
Fr	889	E421	Free parameter 2	0 to 9999	1	9999	
Energy saving monitor	891	M023	Cumulative power monitor digit shifted times	0, 4, 9999	1	9999	
PU	990	E104	PU buzzer control	0, 1	1	1	
Monitor function	992	M104	Operation panel setting dial push monitor selection	2, 8, 13, 20, 25, 43, 44, 55, 62, 98	1	8	
—	997	H103	Fault initiation	0 to 255, 9999	1	9999	
Parallel operation	1001 *2	E390	Parallel operation selection	1, 2, 100, 200, 300	1	100	
x n	1006	E020	Clock (year)	2000 to 2099	1	2000	
Clock function	1007	E021	Clock (month, day)	1/1 to 12/31	1	101	
fur	1008	E022	Clock (hour, minute)	0:00 to 23:59	1	0	
—	1048	E106	Display-off waiting time	0 to 60 min	1 min	0	
ers	Pr.C	LR	Parameter clear	(0), 1	1	0	
Clear parameters	D.J.JA mete		All parameter clear	(0), 1	1	0	
pari	Err.		Fault history clear	(0), 1	1	0	
_	Pr.C		Parameter copy	(0), 1 to 3	1	0	
—	Pr.C		Initial value change list	-	1	0	
—	Pr.I	MD	Group parameter setting	(0), 1, 2	1	0	

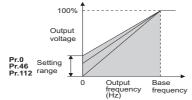
*1 Parameter for manufacturer setting for the FR-CC2-P. Do not set. *2 The parameter is available for the FR-CC2-P only.

Explanations of Parameters

The following marks are used to show the applicable control method: Magnetic flux for Advanced magnetic flux

vector control, <u>Sensorless</u> for Real sensorless vector control, <u>Vector</u> for vector control, and <u>PM</u> for PM sensorless vector control. (Parameters without any mark are valid for all controls.)

Pr.....denotes parameter numbers, and GROUP denotes group parameter numbers.


Connection diagrams appear with the control logic of the input terminals as sink logic, unless otherwise specified.

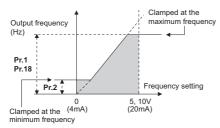
Manual torque boost

Pr.	GROUP	Name	Pr.	GROUP	Name
0	G000	Torque boost	46	G010	Second torque boost
112	G020	Third torque boost			

Voltage drop in the low-frequency range can be compensated,

- improving reduction of the motor torque in the low-speed range.Motor torque in the low-frequency range can be adjusted
- according to the load, in order to increase the motor torque at start.
- The RT and X9 signals enable the switching between 3 types of torque boost.
- Available during V/F control.

Limiting the output frequency (maximum/minimum frequency)

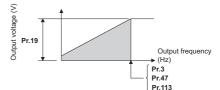

Pr.	GROUP	Name	Pr.	GROUP	Name
1	H400	Maximum frequency	2	H401	Minimum frequency
18	H402	High speed maximum frequency			

Motor speed can be limited.

- · Clamp the upper and lower limits of the output frequency.
- To operate at a frequency higher than 120 Hz, adjust the maximum output frequency with **Pr.18**.

(If a frequency is set in **Pr.18**, the **Pr.1** setting automatically changes to the frequency set in **Pr.18**. Also, if a frequency is set in **Pr.1**, the **Pr.18** setting automatically changes to the frequency set in **Pr.1**.)

• During position control under vector control, the maximum frequency is valid for the speed command calculated considering the droop pulses. The lower frequency limit is disabled.

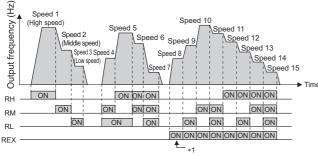


Base frequency, voltage **EV/**

Pr.	GROUP	Name	Pr.	GROUP	Name
3	G001	Base frequency	19	G002	Base frequency voltage
47	G011	Second V/F (base frequency)	113	G021	Third V/F (base frequency)

Use this function to adjust the inverter outputs (voltage, frequency) to match with the motor rating.

- When operating a standard motor, generally set the rated frequency of the motor in **Pr.3 Base frequency**. When running the motor using commercial power supply-inverter switch-over operation, set **Pr.3** to the same value as the power supply frequency.
- When you want to change the base frequency when switching multiple motors with one inverter, etc., use the Pr.47 Second V/F (base frequency) and Pr.113 Third V/F (base frequency).
- Set the rated voltage (rated motor voltage, etc.) to the Pr.19 Base frequency voltage.
- Available during V/F control.



Multi-speed setting operation

Pr.	GROUP	Name	Pr.	GROUP	Name
4	D301	Multi-speed setting (high speed)	5	D302	Multi-speed setting (middle speed)
6	D303	Multi-speed setting (low speed)	24	D304	Multi-speed setting (speed 4)
25	D305	Multi-speed setting (speed 5)	26	D306	Multi-speed setting (speed 6)
27	D307	Multi-speed setting (speed 7)	28	D300	Multi-speed input compensation selection
232	D308	Multi-speed setting (speed 8)	233	D309	Multi-speed setting (speed 9)
234	D310	Multi-speed setting (speed 10)	235	D311	Multi-speed setting (speed 11)
236	D312	Multi-speed setting (speed 12)	237	D313	Multi-speed setting (speed 13)
238	D314	Multi-speed setting (speed 14)	239	D315	Multi-speed setting (speed 15)

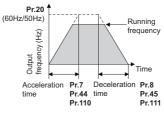
Use these parameters to change among pre-set operation speeds with contact signals. The speeds are pre-set with parameters. Any speed can be selected by simply turning ON/OFF the contact signals (RH, RM, RL, and REX signals).

- The inverter operates at the frequency set in Pr.4 when RH signal is ON, Pr.5 when RM signal is ON and Pr.6 when RL signal is ON.
- The frequency from 4th speed to 15th speed can be set in accordance with the combination of the RH, RM, RL, and REX signals. Set the running frequencies in Pr.24 to Pr.27 and Pr.232 to Pr.239. (In the initial status, 4th speed to 15th speed are invalid.)

*1 Operates at the frequency set in Pr.6 when RH, RM, or RL is OFF and REX is ON while Pr.232 Multi-speed setting (speed 8) = "9999".

Speed (frequency) can be compensated for the multi-speed setting and the remote setting by inputting the frequency setting compensation signal (terminals 1, 2).

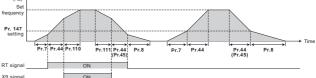
Pr.28 setting	Description
0 (initial value)	Without compensation
1	With compensation


Acceleration/deceleration time

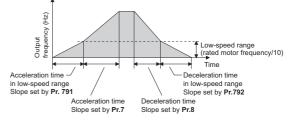
Pr.	GROUP	Name	Pr.	GROUP	Name
7	F010	Acceleration time	8	F011	Deceleration time
20	F000	Acceleration/ deceleration reference frequency	21	F001	Acceleration/ deceleration time increments
44	F020	Second acceleration/ deceleration time	45	F021	Second deceleration time
110	F030	Third acceleration/ deceleration time	111	F031	Third deceleration time
147	F022	Acceleration/ deceleration time switching frequency	791	F070	Acceleration time in low-speed range
792	F071	Deceleration time in low-speed range			

The following parameters are used to set motor acceleration/ deceleration time.

Set a larger value for a slower acceleration/deceleration, and a smaller value for a faster acceleration/deceleration.


- Use **Pr.7 Acceleration time** to set the acceleration time required to reach **Pr.20 Acceleration/deceleration reference frequency** from a stop status.
- Use Pr.8 Deceleration time to set the deceleration time required to reach a stop status from Pr.20 Acceleration/deceleration reference frequency.

Pr.21 setting	Γ	Description
0 (initial value)	Increment: 0.1 s	Set the increment for the acceleration/deceleration
1	Increment: 0.01 s	setting.


 Pr.44 and Pr.45 are valid when the RT signal is ON or when the output frequency is equal to or higher than the frequency set in Pr.147 Acceleration/deceleration time switching frequency Pr 110 and Pr 111 are valid when the X9 signal is ON

frequency.Pr.110 and **Pr.111** are valid when the X9 signal is ON.

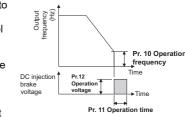
 If torque is required in the low-speed range (less than 10% of the rated motor frequency) under PM sensorless vector control, set the Pr.791 Acceleration time in low-speed range and Pr.792 Deceleration time in low-speed range settings higher than the Pr.7 Acceleration time and Pr.8 Deceleration time settings so that the mild acceleration/deceleration is performed in the lowspeed range. Enabled especially under the current synchronization operation.

(This function is not available for the FR-A842-P.)

Overheat protection of the motor (electronic thermal O/L relay)

Pr.	GROUP	Name	Pr.	GROUP	Name
9	H000	Electronic thermal O/L relay		H010	Second electronic thermal O/L relay
561	H020	PTC thermistor protection level	600	H001	First free thermal reduction frequency 1
601	H002	First free thermal reduction ratio 1	602	H003	First free thermal reduction frequency 2
603	H004	First free thermal reduction ratio 2	604	H005	First free thermal reduction frequency 3
607	H006	Motor permissible load level	608	H016	Second motor permissible load level
692	H011	Second free thermal reduction frequency 1	693	H012	Second free thermal reduction ratio 1
694	H013	Second free thermal reduction frequency 2	695	H014	Second free thermal reduction ratio 2
696	H015	Second free thermal reduction frequency 3	876	H022	Thermal protector input
1016	H021	PTC thermistor protection detection time			

Set the current for the electronic thermal O/L relay to protect the motor from overheating. Such a setting will provide the optimum protective characteristic considering the low cooling capability of the motor during low-speed operation.


- This function detects the overload (overheat) of the motor and trips the inverter by stopping the operation of the transistor at the inverter output side.
- Set the rated motor current (A) in Pr.9. (If the motor has both 50 Hz and 60 Hz ratings and the Pr.3 Base frequency is set to 60 Hz, set to 1.1 times the 60 Hz rated motor current.
- Set "0" in Pr.9 to avoid activating the electronic thermal relay function; for example, when using an external thermal relay for the motor. (Note that the output transistor protection of the inverter is enabled. (E.THT))
- Mitsubishi Electric constant-torque motor Set one of "1, 13 to 18, 50, 53, or 54" in Pr.71. (This setting will enable the 100% constant-torque characteristic in the low-speed range.)
- When using an IPM motor (MM-CF), perform IPM parameter initialization to automatically set the rated current of the IPM motor.
- The outputs from the PTC thermistor built into the motor can be input to terminals 2 and 10. When the input from the PTC thermistor reaches the resistance value set in **Pr.561**, PTC thermistor operation (E.PTC) will be activated to shut off the inverter outputs.
- When the PTC thermistor protection level setting is used, use Pr.1016 to set the time from when the resistance of the PTC thermistor reaches the protection level until the protective function (E.PTC) is activated.
- The activation level of the electronic thermal O/L relay Pr.600 to Pr.604 (Pr.692 to Pr.696) can be varied according to the thermal characteristic of the motor.
- While the RT signal is ON, the setting values of Pr.51 and Pr.692 to Pr.696 are referred to provide thermal protection. Use the electronic thermal O/L relay function to drive two motors of different current ratings by one inverter. (To rotate two motors at once, use an external thermal relay.)
- To change the operational characteristic of the electronic thermal O/L relay, set the permissible load level in **Pr.607** or **Pr.608** according to the motor characteristics.
- Use **Pr.876** to set valid/invalid status of terminal OH function when the FR-A8TP is installed.

DC injection brake, zero speed control, and servo lock

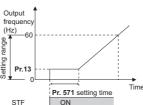
Pr.	GROUP	Name	Pr.	GROUP	Name
10	G100	DC injection brake operation frequency	11	G101	DC injection brake operation time
12	G110	DC injection brake operation voltage	802	G102	Pre-excitation selection
850	G103	Brake operation selection	1299	G108	Second pre- excitation selection

When stopping a motor, DC injection brake is applied to adjust the braking torque and timing to stop the motor.

 By setting the frequency to operate the DC injection brake (zero speed control and servo lock) to Pr.10 DC injection brake operation frequency, the DC injection brake (zero speed control and servo lock) will operate when it reaches this frequency at the time of deceleration.

- Set the time applying the DC injection brake (zero speed control and servo lock) to **Pr.11 DC injection brake operation time**.
- Pr.12 DC injection brake operation voltage will set the percent against the power supply voltage. (Not used at the time of zero speed control or servo lock)
- Under Real sensorless vector control, Pr.850 can be used to select DC injection brake (setting value "0", initial value), zero speed control (setting value "1"), or magnetic flux decay output shutoff (setting value "2").
- When speed control is selected under vector control or PM sensorless vector control, pre-excitation braking operation by the LX signal can either be zero speed control or servo lock control. Pre-excitation is valid at LX signal ON.

Pr.802 (Pr.1299) Setting value	Braking operation	Description
0 (initial value)	Zero speed control	It will try to maintain 0 r/min so the motor shaft will not rotate even when a load is applied. However, it will not return to its original position when the shaft moves due to external force.
1	Servo lock	It will try to maintain the position of the motor shaft even if a load is applied. When the shaft moves due to external force, it will return to its original position after the external force is removed.


- For the vector control and PM sensorless vector control, set the frequency at where the zero speed control or servo lock control activates (Pr.10) and the operating period of the control (Pr.11). Use Pr.802 to select whether the zero speed control or servo lock control. During vector control, the initial value of Pr.10 is automatically set to 0.5 Hz.
- Turning ON the RT signal enables the second pre-excitation selection.

Starting frequency and start-time hold function Magnetic flux Sensorless Vector

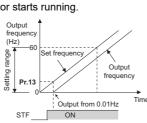
Pr.	GROUP	Name	Pr.	GROUP	Name
13	F102	Starting frequency	571	F103	Holding time at a start

The starting frequency can be set and the starting frequency can be held for a certain period of time.

Set these functions when starting torque is needed or the motor drive at start needs smoothing.

Minimum frequency at motor start and start-time hold function

Pr.	GROUP	Name	Pr.	GROUP	Name		
13	F102	Starting frequency	571	F103	Holding time at a start		
Set the frequency where the PM motor starts running							

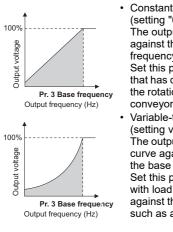

- Set the frequency where the PM motor starts runn
- When setting a frequency with analog input, set the deadband in the low-speed range to eliminate noise and offset deviation.

When the low-speed range

function is enabled (Pr.788 =

"9999"), the frequency level of

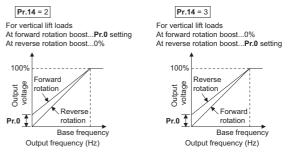
high-torque characteristic



0.01 Hz is held for the time period of **Pr.571** after turning ON the start signal.

V/F patterns for various applications

Pr.	GROUP	Name
14	G003	Load pattern selection


Optimal output characteristics (V/F characteristics) for application or load characteristics can be selected. Available during V/F control.

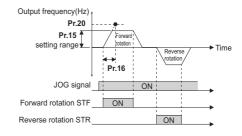
 Constant-torque load application (setting "0", initial value) The output voltage will change linearly against the output frequency at the base frequency or lower. Set this parameter when driving a load that has constant load torque even when the rotation speed is changed, such as a conveyor, dolly, or roll drive.
 Variable-torque load applications

(setting value "1") The output voltage will change in square curve against the output frequency at the base frequency or lower. Set this parameter when driving a load

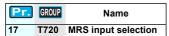
with load torque change proportionally against the square of the rotation speed, such as a fan or pump. Vertical lift load applications (setting value "2, 3") Set "2" for a vertical lift load that is in power driving at forward rotation and in regenerative driving at reverse rotation. **Pr.0 Torque boost** is valid during forward rotation, and torque boost is automatically changed to "0%" during reverse rotation. Set "3" for the counterweight system, etc. that is in power driving at reverse rotation and in regenerative driving at forward rotation, according to the load weight.

Switching applied load selection with a terminal (setting value "4, 5")

The RT and X17 signals enable the switching between the constant-torque load operation and lift operation.

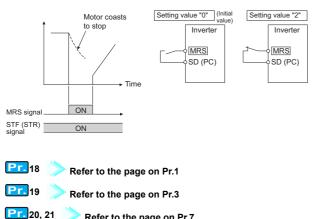

Pr.14 Setting value	RT(X17) signal	output characteristic		
4	ON	For constant-torque load (same as the setting value "0")		
-	OFF	For lift, boost at reverse rotation 0% (same as the setting value "2")		
5	ON	For constant-torque load (same as the setting value "0")		
5	OFF	For lift, boost at reverse rotation 0% (same as the setting value "3")		

JOG operation


Pr.	GROUP	Name	Pr.	GROUP	Name
15	D200	Jog frequency	16	F002	Jog acceleration/ deceleration time

The frequency and acceleration/deceleration time for JOG operation can be set. JOG operation is possible in both External operation and PU.

JOG operation can be used for conveyor positioning, test operation, etc.



Inverter output shutoff signal

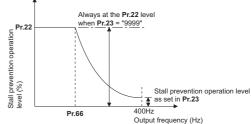
The inverter output can be shut off with the MRS signal. The logic of the MRS signal can also be selected.

When Pr.17="4", the MRS signal from an external terminal is be set as the normally closed (NC contact) input, and the MRS signal (output stop) via communication as the normally open (NO contact) input.

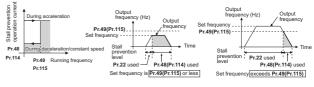
Refer to the page on Pr.7

Stall prevention operation V/F Magnetic flux

Pr	GROUP	Name	Pr.	GROUP	Name
	GROUP	Name		GROOP	Name
22	H500	Stall prevention operation level	23	H610	Stall prevention operation level compensation factor at double speed
48	H600	Second stall prevention operation level	49	H601	Second stall prevention operation frequency
66	H611	Stall prevention operation reduction starting frequency	114	H602	Third stall prevention operation level
115	H603	Third stall prevention operation frequency	148	H620	Stall prevention level at 0 V input
149	H621	Stall prevention level at 10 V input	154	H631	Voltage reduction selection during stall prevention operation
156	H501	Stall prevention operation selection	157	M430	OL signal output timer
858	T040	Terminal 4 function assignment	868	T010	Terminal 1 function assignment


This function monitors the output current and automatically changes the output frequency to prevent the inverter from tripping due to overcurrent, overvoltage, etc. It can also limit the stall prevention and fast-response current limit operation during acceleration/ deceleration and power/regenerative driving.

This function is disabled during Real sensorless vector control, vector control and PM sensorless vector control.


- Stall prevention
- If the output current exceeds the stall prevention operation level, the output frequency of the inverter is automatically changed to reduce the output current. Also the second and third stall prevention functions can limit the output frequency range in which the stall prevention function is enabled.
- Fast-response current limit

If the current exceeds the limit value, the output of the inverter is shut off to prevent an overcurrent. (This function is not available for the FR-A842-P.)

- For Pr.22, set the ratio of the output current to the inverter rated current at which the stall prevention operation will be activated. Normally, this should be set at 150% (initial value). For the FR-A820-00250(3.7K) or lower and FR-A840-00126(3.7K) or lower, when the control method is changed from V/F control or Advanced magnetic flux vector control to Real sensorless vector control, or vector control, the Pr.22 setting changes from 150% (initial value) to 200%.
- To set the stall prevention operation level with the analog signal via terminal 1 (terminal 4), set Pr.868 (Pr.858)="4". Use Pr.148 and Pr.149 to adjust gain and bias for the analog signals.
- When operating at the rated motor frequency or higher, acceleration may not be made because the motor current does not increase. Also, when operating in the high-frequency range, the current flowing to the locked motor becomes less than the rated output current of the inverter; and even if the motor is stopped, the protective function will not operate (OL). In a case like this, the stall prevention level can be reduced in the high-frequency range to improve the motor's operating characteristics. This is useful when operating up to the high speed range, such as when using a centrifuge. Normally, set Pr.66 to 60 Hz, and Pr.23 to 100%.
- When Pr.23="9999" (initial value), the stall prevention operation level is constant at the Pr.22 level up to 590 Hz.

- By setting Pr.49="9999" and turning ON the RT signal, Pr.48 will be enabled.
- To enable Pr.114, set Pr.115≠ "0" and turn ON the X9 signal.
- Use Pr.48 (Pr.114) to set the stall prevention operation level applicable in the range between 0 Hz and the frequency set in Pr.49 (Pr.115).

Pr.49 Pr.115 setting setting		Operation		
0 (initial value)		The second (third) stall prevention function disabled.		
0.01 Hz	to 590 Hz	The second (third) stall prevention function operates according to the frequency.		
9999	Setting not available	The second stall prevention function operates according to the RT signal. RT signal ON: stall level Pr.48 RT signal OFF: stall level Pr.22		

Use Pr.154 to further suppress the activation of the protective function (E.OC[], E.OV[]) during stall prevention operation.

- Use Pr.156 to suppress the stall prevention operation and the fast-response current limit in accordance with the operating status
- When Real sensorless vector control, vector control or PM sensorless vector control is selected using Pr.800, Pr.22 serves as the torque limit level.

Setting the torque limit level under speed control Sensorless Vector PM

Pr.	GROUP	Name	Pr.	GROUP	Name
22	H500	Stall prevention operation level (Torque limit level)	157	M430	OL signal output timer
801	H704	Output limit level	803	G210	Constant output range torque characteristic selection
804	D400	Torque command source selection	805	D401	Torque command value (RAM)
806	D402	Torque command value (RAM, EEPROM)	810	H700	Torque limit input method selection
811	D030	Set resolution switchover	812	H701	Torque limit level (regeneration)
813	H702	Torque limit level (3rd quadrant)	814	H703	Torque limit level (4th quadrant)
815	H710	Torque limit level 2	816	H720	Torque limit level during acceleration
817	H721	Torque limit level during deceleration	858	T040	Terminal 4 function assignment
868	T010	Terminal 1 function assignment	874	H730	OLT level setting

During speed control under Real sensorless vector control, vector control and PM sensorless vector control, the output torque is limited to prevent it from exceeding a specified value.

- The torque limit level can be set in a range of 0 to 400% using **Pr.22**. When the TL signal is ON, the torque limit level 2 (Pr.815) is enabled.
- The torque limit level can be selected by setting it with a parameter, or by using analog input terminals (terminals 1, 4). Also, the torque limit level at forward rotation (power driving/ regenerative driving) and reverse rotation (power driving/ regenerative driving) can be set individually.

Pr.	Setting range	Description
	0 (initial value)	Torque limit by parameter setting
810	1	Torque limit using the analog signals input to terminals 1 and 4.
	2	Torque limit by communication options
812	0 to 400%	Set the torque limit level for forward rotation regenerative driving.
812	9999 (initial value)	Limit using Pr.22 or the analog terminal values.
813	0 to 400%	Set the torque limit level for reverse rotation power driving.
013	9999 (initial value)	Limit using Pr.22 or the analog terminal values.
814	0 to 400%	Set the torque limit level for reverse rotation regenerative driving.
814	9999 (initial value)	Limit using Pr.22 or the analog terminal values.

- When inputting an analog signal from terminal 1 (4) to set the torque limit level, set Pr.810="1" or Pr.868 (Pr.858)="4"
- The torque limit value can be input via CC-Link (using the FR-A8NC) or CC-Link IE Field network (using the FR-A8NCE or FR-A800-GF) communication.
- Use Pr.816 and Pr.817 to set the torque limit value during acceleration/deceleration.
- To avoid overload or overcurrent of the inverter or motor, use Pr.801 Output limit level to limit the torque current.

Pr.801 setting Description			
0 to 400%	Set the torque current limit level.		
9999	Torque current limit using torque limit setting value (Pr.22 , Pr.812 to Pr.817 , etc.)		

For the torgue limit operation during Real sensorless vector control and vector control, use Pr.803 to change the torque characteristic in the low-speed range and in the constant output range.

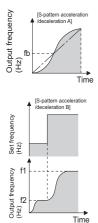
Pr.803	Torque characteristic in	Torque characteristic in constant- outpu range			
setting	low-speed range	Torque characteristic	Output limit		
0 (initial value)	Torque changes according to the scaling factor set in Pr.86 . *1	Constant motor output	_		
1	Constant torque	Constant torque	Without		
2	Constant torque	Constant torque	With		
10	Constant torque	Constant motor output	—		
11	Torque changes according to the scaling factor set in Pr.86. *1	Constant torque	Without		

This function is only available under Real sensorless vector control. The upper limit of the torque at 0 Hz is determined by *1 multiplying the torque limit in the constant-torque range by the scaling factor set in Pr.86.

- The inverter can be set to trip at activation of torque limit operation and stalling of the motor. Use Pr.874 to set the output torque where the protective function activates.
- Use Pr.811 to change the parameter setting increment for the torque limit setting from 0.1% to 0.01%.
- If Pr.800 is used to select V/F control or Advanced magnetic flux vector control, the Pr.22 setting operates as the stall prevention operation level.


Pr.24 to 28 📄 Refer to the page on Pr.4

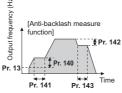
Acceleration/deceleration pattern and backlash measures


Pr.	GROUP	Name	Pr.	GROUP	Name
29	F100	Acceleration/ deceleration pattern selection	140	F200	Backlash acceleration stopping frequency
141	F201	Backlash acceleration stopping time	142	F202	Backlash deceleration stopping frequency
143	F203	Backlash deceleration stopping time	380	F300	Acceleration S- pattern 1
381	F301	Deceleration S- pattern 1	382	F302	Acceleration S- pattern 2
383	F303	Deceleration S- pattern 2	516	F400	S-pattern time at a start of acceleration
517	F401	S-pattern time at a completion of acceleration	518	F402	S-pattern time at a start of deceleration
519	F403	S-pattern time at a completion of deceleration			

The acceleration/deceleration pattern can be set according to the application.

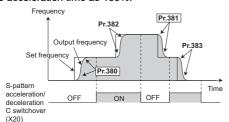
In addition, the backlash measures, which stop acceleration/ deceleration at certain frequency or time set in parameters during acceleration/deceleration, can be set.

· Linear acceleration/deceleration (setting value "0", initial value) When the frequency is changed for acceleration, deceleration, etc. during inverter operation, the output frequency is changed linearly (linear acceleration/ deceleration) to reach the set frequency without straining the motor and inverter.

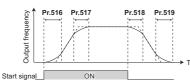

S-pattern acceleration/deceleration A (setting value "1")

For the main shaft of a machine, etc. Use this when quick acceleration/ deceleration is required to reach a highspeed area equal to or higher than the base frequency.

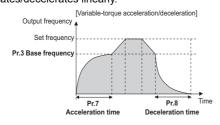
S-pattern acceleration/deceleration B (setting value "2")


This is useful for preventing stacks from collapsing on a conveyor, etc. S-pattern acceleration/deceleration B can reduce the impact during acceleration/ deceleration by accelerating/decelerating in an S-pattern from the present frequency (f2) to the target frequency (f1).

Backlash measures (setting value "3", **Pr.140** to **Pr.143**) To avoid backlash, acceleration/deceleration is temporarily stopped. Set the acceleration/deceleration stopping frequency and time in **Pr.140** to **Pr.143**.


 S-pattern acceleration/deceleration C (setting value "4", Pr.380 to Pr.383)

The acceleration/deceleration curve is switched by the S-pattern acceleration/deceleration C switchover (X20) signal. Set the ratio (%) of time for drawing an S-shape in **Pr.380** to **Pr.383** with the acceleration time as 100%.



 S-pattern acceleration/deceleration D (setting value "5", Pr.516 to Pr.519)

Set the time required for S-pattern operation part of S-pattern acceleration/deceleration with **Pr.516** to **Pr.519**.

 Variable-torque acceleration/deceleration (Pr.29="6") This function is useful for variable-torque load such as a fan or blower to accelerate/decelerate in short time. In areas where output frequency > base frequency, the speed accelerates/decelerates linearly.

Selecting the regenerative brake and DC feeding

Pr.	GROUP	Name	Pr.	GROUP	Name
30	E300	Regenerative function selection	70	G107	Special regenerative brake duty
599	T721	X10 terminal input selection			

- By using the optional high-duty brake resistor (FR-ABR) or the brake unit (FR-BU2, BU, FR-BU), the regenerative brake duty can be increased for the operation with frequent starts and stops.
- The multifunction regeneration converter (FR-XC in power regeneration mode), power regeneration common converter (FR-CV) (for 55K or lower), and power regeneration converter (MT-RC) (for 75K or higher) are used for continuous operation during regenerative driving.

The high power factor converter (FR-HC2) and multifunction regeneration converter (FR-XC in common bus regeneration mode) can also be used for harmonic suppression and power factor improvement.

- For standard models and IP55 compatible models, it is possible to choose between the DC feeding mode 1, which will operate with DC power supply (terminals P and N), and DC feeding mode 2, which will normally operate in AC power supply (terminals R, S, and T) and operate in DC power supply (terminal P and N), such as batteries, at the time of power failure.
- Standard model
- For FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower

Regeneration unit	Power supply to the inverter	Pr.30 setting value	Pr.70 setting value	
When the built-in brake,	the built-in brake, R, S, T		Brake duty differs	
Brake unit (FR-BU2, BU, FR-BU *1)	P, N	10, 110	according to the	
(R, S, T/P, N	20, 120	capacity.	
	R, S, T	1, 101	100/	
High-duty brake resistor (FR-ABR)	P, N	11, 111	10%*3 6%*4	
()	R, S, T/P, N	21, 121		
Multifunction regeneration converter (FR-XC) (Power regeneration mode)	R, S, T	0	_	
High power factor converter (FR-HC2), Multifunction regeneration converter (FR-XC) (Common bus regeneration mode), Power regeneration common converter (FR-CV)	P, N	2, 102	0% (initial value)	

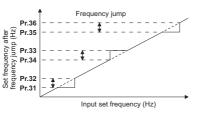
FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher

Regeneration unit	Power supply to the inverter	Pr.30 setting value	Pr.70 setting value	
	R, S, T	0 (initial value), 100		
No regenerative function	P, N	10, 110	—	
	R, S, T/P, N	20, 120		
	R, S, T	1, 101	00/ /: ::: 1	
Brake unit (FR-BU2*2)	P, N	11, 111	0% (initial value)	
	R, S, T/P, N	21, 121	valuoj	
Power regeneration converter (MT-RC)	R, S, T	1, 101	0% (initial value)	
Multifunction regeneration converter (FR-XC) (Power regeneration mode)	R, S, T	0	_	
High power factor converter (FR-HC2)	P, N	2, 102	_	

• Separated converter type

Regeneration unit	Power supply to the inverter	Pr.30 setting value
No regenerative function (FR-CC2)	P, N	10 (initial value), 110
Brake unit (FR-CC2+FR-BU2*2)	P, N	11, 111
High power factor converter (FR-HC2)	P, N	2, 102

• IP55 compatible model


Regeneration unit	Power supply to the inverter	Pr.30 setting value
	R, S, T	0 (initial value), 100
Brake unit (FR-BU2, BU, FR-BU*1)	P, N	10, 110
(R, S, T/P, N	20, 120
High power factor converter (FR-HC2), Power regeneration common converter (FR-CV)	P, N	2, 102

- *1 Used in combination with GZG, GRZG, or FR-BR.
- Used in combination with MT-BR5
 Setting for the FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower
- Setting for the FR-A820-00630(11K) or higher and FR-A840-00310(11K) or higher
- When set to Pr.599 = "1", X10 signal can be changed to normally closed (NC contact) input specification.

Avoiding machine resonance points (frequency jump)

Pr.	GROUP	Name	Pr.	GROUP	Name
31	H420	Frequency jump 1A	32	H421	Frequency jump 1B
33	H422	Frequency jump 2A	34	H423	Frequency jump 2B
35	H424	Frequency jump 3A	36	H425	Frequency jump 3B
552	H429	Frequency jump range			

When it is desired to avoid resonance attributable to the natural frequency of a mechanical system, these parameters allow resonant frequencies to be jumped.

- Up to three areas can be set, with the jump frequencies set to either the top or bottom point of each area.
- The frequency jumps 1A, 2A, 3A can be set and operation is performed at these frequencies in the jump areas.
- At the initial setting "9999", frequency jumps are not performed.
 During acceleration/deceleration, the running frequency within
- the set area is valid.
 A total of six jump areas can be set **Pr.552** by setting the common
- jump range for the frequencies set in **Pr.31** to **Pr.36**.

Speed display and speed setting

Pr.	GROUP	Name	Pr.	GROUP	Name
37	M000	Speed display	144	M002	Speed setting switchover
505	M001	Speed setting reference	811	D030	Set resolution switchover

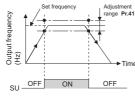
The monitor display unit and the frequency setting on PU(FR-DU08/ FR-PU07) can be switched to motor speed and machine speed.

- The setting increment for each monitor is determined by the combination of **Pr.37** and **Pr.144**. (The initial values are shown within the thick lines.)
- Use Pr.811 to change the increment for the running speed monitor and speed setting monitor (r/min) from 1 r/min to 0.1 r/ min.
- Changing the number of motor poles using Pr.81 Number of motor poles will change the Pr.144 setting value.

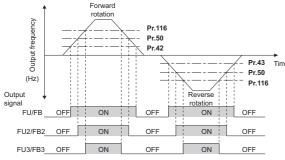
Pr.37 setting value	Pr.144 setting value	Output frequency monitor	Set frequency monitor	Running speed monitor	Frequency setting parameter setting
	0	0.01 Hz	0.01 Hz	1 r/min *1*2	0.01 Hz
0 (initial	2 to 12	0.01 Hz	0.01 Hz	1 r/min *1*2	0.01 Hz
value)	102 to 112	1 r/min *1*2	1 r/min *1*2	1 r/min *1*2	1 r/min *1
	0	0.01 Hz	0.01 Hz	1 (machine speed) *1	0.01 Hz
1 to 9998	2 to 12	1 (machine speed) *1	1 (machine speed) *1	1 (machine speed) *1	1 (machine speed) *1
	102 to 112	0.01 Hz	0.01 Hz	1 r/min *1*2	0.01 Hz

*1 Conversion formula to the motor speed r/min Frequency × 120 / number of motor poles (Pr.144) Conversion formula to machine speed Pr.37 × Frequency / Pr.505

For **Pr.144** in the above formula, the value is "**Pr.144** - 100" when "102 to 110" is set in **Pr.144**; and the value is "4" when **Pr.37**=0 and **Pr.144**=0.


*2 Use **Pr.811** to change the increment from 1 r/min to 0.1 r/min.

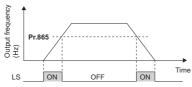
Output frequency detection

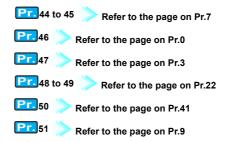

Pr.	GROUP	Name	Pr.	GROUP	Name
41	M441	Up-to-frequency sensitivity	42	M442	Output frequency detection
43	M443	Output frequency detection for reverse rotation	50	M444	Second output frequency detection
116	M445	Third output frequency detection	865	M446	Low speed detection
870	M400	Speed detection hysteresis			

The output frequency of the inverter is detected to output as an output signal.

- The **Pr.41** value can be adjusted within the range ±1% to ±100% considering the set frequency as 100%.
- This parameter can be used to check whether the set frequency has been reached, and provide signals such as the operation start signal for related equipment.

- Output frequency detection signal (FU, FB) is output when the output frequency reaches the **Pr.42** setting or higher. This function can be used for electromagnetic brake operation, open signal, etc.
- Frequency detection dedicated to reverse rotation can also be set by setting the detection frequency to **Pr.43**. This is useful for changing the timing of the electromagnetic brake for forward rotation (lifting) and reverse rotation (lowering) in operations such as a lift operation.
- When outputting a frequency detection signal separately from the FU (FB) signal, set the detection frequency in Pr.50 or Pr.116.
 When the output frequency reaches the Pr.50 setting or higher, the FU2 (FB2) signal is output (when it reaches the Pr.116 setting or higher, the FU3 (FB3) signal is output).




 During Real sensorless vector control and vector control, FU (FU2, FU3) signal is output when the output frequency reaches the specified speed, and FB (FB2, FB3) signal is output when the actual motor speed (estimated actual rotations per minute) reaches the specified speed.

(Output timings of FU and FB signals are the same under V/F control, Advanced magnetic flux vector control, and encoder feedback control.)

 During Real sensorless vector control, vector control, and PM sensorless vector control, the LS signal is output when the output frequency drops to **Pr.865** or lower.

During inverter operation, signals are output by the following conditions.

Monitor display selection

Pr.	GROUP	Name	Pr.	GROUP	Name
52	M100	Operation panel main monitor selection	54	M300	FM/CA terminal function selection
158	M301	AM terminal function selection	170	M020	Watt-hour meter clear
171	M030	Operation hour meter clear	268	M022	Monitor decimal digits selection
290	M044	Monitor negative output selection	563	M021	Energization time carrying-over times
564	M031	Operating time carrying-over times	774	M101	Operation panel monitor selection 1
775	M102	Operation panel monitor selection 2	776	M103	Operation panel monitor selection 3
891	M023	Cumulative power monitor digit shifted times	992	M104	Operation panel setting dial push monitor selection
1018	M045	Monitor with sign selection	1106	M050	Torque monitor filter
1107	M051	Running speed monitor filter	1108	M052	Excitation current monitor filter

Use **Pr.52**, **Pr.774** to **Pr.776**, **Pr.992** to select a monitored item to be displayed on the operation panel (FR-DU08) and parameter unit (FR-PU07).

Refer to the following table and set the monitor to be displayed. (The items with — are not available for monitoring. The circle in the display/output column denotes availability of the minus sign display/ output.)

Monitored item	Unit	Pr.776, Pr.992		Pr.54 (FM/CA) Pr.158 (AM) setting value	Terminal FM, CA, AM full-scale value	Minus (-) display /output *14
Output frequency/ Rotation speed*10	0.01 Hz *9	1/0/1	00	1*17	Pr.55	O*15
Output current*6*7*10	0.01 A/ 0.1 A *5	2/0/1	00	2	Pr.56	
Output voltage*6*10	0.1 V	3/0/1	00	3	200 V class: 400 V 400 V class: 800 V	
Fault or alarm indication	_	0/100)	-		
Frequency setting value/ speed setting	0.01 Hz *9	5	*1	5 *17	Pr.55	
Running speed	1 (r/min)	6	*1	6	Setting value of Pr.55 converted by Pr.37 and Pr.144.	O*15
Motor torque	0.1%	7	*1	7	Pr.866	0
Converter output voltage*6	0.1 V	8	*1	8	200 V class: 400 V 400 V class: 800 V	
Regenerative brake duty*13	0.1%	9	*1	9	Brake duty determined by Pr.30 and Pr.70	
Electronic thermal O/L relay load factor		10	*1	10	Electronic thermal O/L relay (100%)	
Output current peak value*6	0.01 A/ 0.1 A *5	11	*1	11	Pr.56	
Converter output voltage peak value*6	0.1 V	12	*1	12	200 V class: 400 V 400 V class: 800 V	
Input power	0.01 kW/ 0.1 kW *5	13	*1	13	Rated inverter power × 2	
Output power*7	0.01 kW/ 0.1 kW *5	14	*1	14	Rated inverter power × 2	

Monitored item	Unit	Pr. Pr.77 Pr.7 Pr.9	74 to 776,	Pr.54 (FM/CA) Pr.158 (AM) setting value	Terminal FM, CA, AM full-scale value	Minus (-) display /output *14	Monitored iten
Load meter	0.1%	17		17	Pr.866		Option input
Motor excitation current*6	0.01 A/ 0.1 A *5	18		18	Pr.56		terminal status 2 (for
Position pulse*8	0.1A*5	19		—			communication)* Option output
Cumulative energization time*2	1 h	20					terminal status 1 (for communication)*
Reference voltage output		-		21			Motor thermal
Orientation status*8	1	22		—			load factor
Actual operation time*2*3	1 h	23			-		Inverter therma load factor
Motor load factor	0.1%	24		24	200%		PTC thermisto resistance
Cumulative power*6	0.01 kWh/ 0.1 kWh*4*5	25					PID measured value 2
Position command	1	26				0	PLC function analog output
Position command	1	27		_		0	Cumulative pulse*8 Cumulative
(upper digits) Current position	1	28				0	pulse overflow times*8
Current position (upper digits)	1	29				0	Cumulative
Droop pulse	1	30				0	pulse (control terminal
Droop pulse (upper digits)	1	31		—		0	option)*8 Cumulative
Torque command	0.1%	32		32	Pr.866	0	pulse overflow times (control terminal
Torque current command	0.1%	33		33	Pr.866	0	option)*8
Motor output	0.01 kW/ 0.1 kW *5	34		34	Rated motor capacity		counter*8
Feedback pulse*8		35					cumulative power (lower 1
Torque momitor (driving/ regenerative polarity switching)	0.1%	36		36	Pr.866	0	bits) 32-bit cumulative power (upper 1 bits)
Trace status SSCNET III(/H)	1	38					32-bit cumulative
status*8	1	39					power (lower 1 bits) 32-bit
PLC function user monitor 1	Increment	40					cumulative power (upper 1
PLC function user monitor 2	set in SD1215	41		—			bits)
PLC function user monitor 3	001210	42		—			Remote outpu value 1 Remote outpu
Station number (RS-485	1	43					value 2 Remote outpu
terminals)*18 Station number	1	44					value 3 Remote outpu
(PU) Station number	1	45					value 4 PID manipulate
(CC-Link) Motor	1°C	46		46	Pr.751	0	variable Second PID se
temperature*8*18 Energy saving	Changeable	50		50	Inverter capacity	-	point Second PID
effect Cumulative	by parameter	51		_			measured valu Second PID
energy saving PID set point	setting 0.1%	52		52	100%		deviation
PID measured value	0.1%	53		53	100%		Second PID measured valu
PID deviation	0.1%	54		54 *11	100%	0	2 Second PID
Input terminal status	-	55	*1	-			manipulated variable
Output terminal status			*1				Dancer main speed setting
Option input terminal status*8		56	_		—		Control circuit temperature
Option output terminal status*8		57	_		—		*1 *2
Option input terminal status 1 (for		— *12		*12	_		*3
1 (for communication)*8							:

Monitored item	Unit	Pr.52, Pr.774 to Pr.776, Pr.992		Pr.54 (FM/CA) Pr.158 (AM)	Terminal FM, CA, AM full-scale value	Minus (-) display
		- T	PU	setting value		/output *14
Option input terminal status 2 (for communication)*8		*12			_	
Option output terminal status 1 (for communication)*8		*12		*12	-	
Motor thermal load factor	0.1%	61		61	Motor thermal activation level (100%)	
Inverter thermal load factor	0.1%	62		62	Inverter thermal activation level (100%)	
PTC thermistor resistance	0.01 kΩ	64		-		
PID measured value 2	0.1%	67		67	100%	
PLC function analog output	0.1%			70	100%	0
Cumulative pulse*8		71		-		O*16
Cumulative pulse overflow times*8		72			_	O*16
Cumulative pulse (control terminal option)*8		73		_	_	O*16
Cumulative pulse overflow times (control terminal option)*8		74			_	O*16
Multi-revolution counter*8	1	75		-		
32-bit cumulative power (lower 16 bits)	1 kWh	*12		*12	_	
32-bit cumulative power (upper 16 bits)	1 kWh	*12		*12		
32-bit cumulative power (lower 16 bits)	0.01 kWh/ 0.1 kWh *5	*12		*12		
32-bit cumulative power (upper 16 bits)	0.01 kWh/ 0.1 kWh *5	*12		*12	_	
Remote output value 1	0.1%	87		87	1000%	
Remote output value 2	0.1%	88		88	1000%	
Remote output value 3	0.1%	89		89	1000%	0
Remote output value 4	0.1%	90		90	1000%	
PID manipulated variable	0.1%	91		91 *11	100%	0
Second PID set point	0.1%	92		92	100%	
Second PID measured value	0.1%	93		93	100%	
Second PID deviation	0.1%	94		94 *11	100%	0
Second PID measured value 2	0.1%	95		95	100%	
Second PID manipulated variable	0.1%	96		96*11	100%	0
Dancer main speed setting	0.01 Hz	97		97	Pr.55	
Control circuit temperature	1°C	98		98	100°C	0
-	o display th	ne mon	itored	l items from	the frequency setting	value to

To display the monitored items from the frequency setting value to the output terminal status on a parameter unit (FR-PU07), select "other monitor".

The cumulative energization time and actual operation time are accumulated from 0 to 65535 hours, then cleared, and accumulated again from 0. The actual operation time does not increase if the cumulative running time before power OFF is less than an hour. When using the parameter unit (FR-PU07), "kW" is displayed Differs according to capacities. (FR-A820-03160(55K) or lower

*4 *5

and FR-A840-01800(55K)or lower/FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher)

- *6 Since the voltage and current displays on the operation panel (FR-DU08) are shown in four digits, a monitor value of more than 9999" is displayed as "-
- When the output current is less than the specified current level *7 (5% of the inverter rated current), the output current is monitored as 0 A.Therefore, the monitored value of an output current and output power may be displayed as "0" when using a much smaller-capacity motor compared to the inverter or in other instances that cause the output current to fall below the specified value
- Available when the option is connected. *8
- *9 When Pr.37="1 to 9998" or Pr.144="2 to 12, 102 to 112", 1 increment is used. (Refer to **page 124**) The monitored values are retained even if an inverter fault occurs.
- *10 Resetting will clear the retained values *11
- Can be set for the AM (Pr.158) only. Can be set or monitored only via communication. *12
- *13 The setting is available for the standard model only.
- Setting **Pr.290** \neq 0 enables the display/output with a minus sign. *14
- Setting **Pr.1018** = 0 enables the display/output with a minus sign. *15
- Negative values are not displayed on the operation panel. The *16 values "-1 to -32767" are displayed as "65535 to 32769" on the operation panel
- The speed is not displayed on the FR-A842-P. Not available for the FR-A842-P. *17
- *18
- · Pr.774 sets the output frequency monitor, Pr.775 sets the output current monitor, and Pr.776 sets the monitor description to be displayed at the output voltage monitor position. When Pr.774 to Pr.776="9999" (initial value), the Pr.52 setting value is used. (For the monitor display sequence, refer to page page 68.)
- Digits in the cumulative power monitor can be shifted to the right by the number set in Pr.891.
- Writing "0" in Pr.170 clears the cumulative power monitor.
- Pr.563 allows the user to check how many times the cumulative energization time monitor has exceeded 65535 h. Pr.564 allows the use to check how many times the actual operation time monitor has exceeded 65535 h.
- Writing "0" in Pr.171 clears the actual operation time monitor.

Pr.268 setting	Description
9999 (initial value)	No function
0	When monitoring with the first or second decimal place (0.1 increments or 0.01 increments), the 0.1 decimal place or lower is dropped to display an integral value (1 increments). The monitor value equal to or smaller than 0.99 is displayed as 0.
1	When monitoring with the second decimal place (0.01 increments), the 0.01 decimal place is dropped and the monitor displays the first decimal place (0.1 increments). When monitoring with the first decimal place, the display will not change.

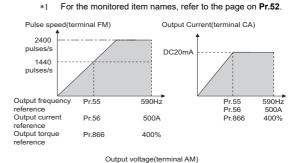
• When Pr.52="100", the set frequency is displayed during stop, and output frequency is displayed during running. (LED of Hz blinks during stop and is lit during operation.)

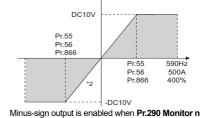
Pr.52	0	100				
Operating status	During running/ stop	During stop	Running			
Output frequency	Output frequency	Set frequency	Output frequency			
Output current	Output current					
Output voltage	Output voltage	Output voltage				
Fault or alarm indication	Fault or alarm indication					

· The monitored item to be displayed at the operation panel (FR-DU08)'s setting dial push can be selected with Pr.992

Pr.992	0	100		
Operating status	During running/ stop			
Monitor displayed by the setting dial push	Set frequency (PU direct-in frequency)	Set frequency	Output frequency	

Depending on the Pr.290 setting, negative output can be selected for terminal AM (analog voltage output), and display with a minus sign is enabled for the operation panel and a communication option.


Pr.290 setting	Terminal AM output	Operation panel display	Monitoring on the communication option
0 (initial value)	-	-	-
1	Output with a minus sign	-	-
2	-	Displayed with a minus sign	-
3	Output with a minus sign	Displayed with a minus sign	-
4	-	-	Displayed with a minus sign
5	Output with a minus sign	-	Displayed with a minus sign
6	-	Displayed with a minus sign	Displayed with a minus sign
7	Output with a minus sign	Displayed with a minus sign	Displayed with a minus sign


Reference for monitor value output from terminal FM/CA, AM

Pr.	GROUP	Name	Pr.	GROUP	Name
55	M040	Frequency monitoring reference	56	M041	Current monitoring reference
866	M042	Torque monitoring reference			

Full scales can be set for the values output from terminal FM/CA and AM.

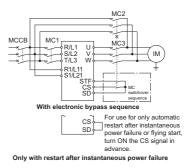
Monitor*1	Reference parameter	Initial value
Frequency	Pr.55	FM type, 60 Hz CA type 50 Hz
Current	Pr.56	Inverter rated current
torque	Pr.866	150%

*2 Minus-sign output is enabled when Pr.290 Monitor negative output selection = "1 and 3".

Automatic restart after instantaneous power failure with an induction motor

Magnetic flux Sensorless Vector V/F

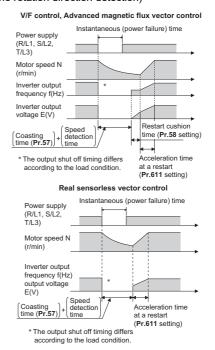
Pr.	GROUP	Name	Pr.	GROUP	Name
57	A702	Restart coasting time	58	A703	Restart cushion time
162	A700	Automatic restart after instantaneous power failure selection	163	A704	First cushion time for restart
164	A705	First cushion voltage for restart	165	A710	Stall prevention operation level for restart
299	A701	Rotation direction detection selection at restarting	611	F003	Acceleration time at a restart


The inverter can be restarted without stopping the motor in the following conditions:

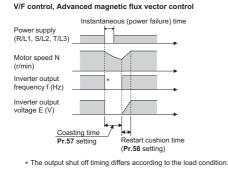
- · When switching from commercial power supply operation over to inverter operation
- When an instantaneous power failure occurs during inverter operation
- When the motor is coasting at start

Pr.	Setting range	Description			
	0(initial value), 1000	Frequency search only performed at the first start			
	1, 1001	Reduced voltage start only at the first start (no frequency search)			
	2, 1002	Encoder detection frequency search			
162	3, 1003	Frequency search only performed at the first start (reduced impact restart)			
	10, 1010	Frequency search at every start			
	11, 1011	educed voltage start at every start (no frequency search)			
	12, 1012	Encoder detection frequency search at every start			
	13, 1013	Frequency search at every start (reduced impact restart)			
	0 (initial value)	Without rotation direction detection			
299	1	With rotation direction detection			
	9999	When Pr.78 Reverse rotation prevention selection = "0", with rotation direction detection Pr.78 Reverse rotation prevention selection = "1, 2", without rotation direction detection			
	0	Coasting time differs according to the inverter capacity.*1			
57	0.1 to 30s	Set the waiting time for the inverter to perform a restart after the power lost by an instantaneous power failure restores.			
	9999 (initial value)	No restart			
58	0 to 60 s	Set the voltage cushion time for restart.			
163	0 to 20 s	Set the voltage cushion time for restart.			
164	0 to 100%	Set a value considering the load amount (moment of inertia, torque).			
165	0 to 400%	Set the stall prevention level at restart considering the inverter rated current as 100%.			
611	0 to 3600 s	Set the acceleration time that takes to reach Pr.20 Acceleration/deceleration reference frequency setting at a restart.			
	9999 (initial value)	Normal acceleration time setting (settings like Pr.7) is applied as the acceleration time for restart.			
	*1	The coasting time when $Pr.57="0"$ is as shown below. (When $Pr.62$ is set to the initial value and the ND rating is selected.) FR-A820-0015(1.5K) or lower and, FR-A840-00052(1.5K) or lower: 0.5s FR-A820-00167(2.2K) to FR-A820-00490(7.5K) and FR-A840-00250(7.5K):1 s			

FR-A840-00083(2.2K) to FR-A840-00250(7.5K):1 s FR-A820-00630(11K) to FR-A820-03160(55K) and FR-A840-00310(11K) to FR-A840-01800(55K): 3.0 s FR-A820-03800(75K) or higher and, FR-A840-02160(75K) or higher : 5.0 s


<Connection diagram>

- Pr.162="0 (initial value), 3, 10, or 13", the motor speed is detected
- at power restoration to start the motor smoothly. During encoder feedback control with **Pr.162** = "2 or 12" or during vector control, the motor starts at power restoration based on the motor speed and rotation direction detected by the encoder. (This operation is available when a vector control compatible option is installed.)
- Setting **Pr.162** = "3, 13" will lead to better-absorbed impacts and smoother motor start (Reduced impact restart) than the Pr.162 = "0, 10" setting does. (Offline auto tuning)


Under Real sensorless vector control, the reduced impact restart is applied, independently of the Pr.162 setting.

The encoder also detects the rotation direction during reverse rotation so that the inverter can re-start smoothly. (Pr.299 Rotation direction detection selection at restarting to enable/ disable the rotation direction detection)

• When Pr.162 = "1" or "11", automatic restart operation is performed in a reduced voltage system, where the voltage is gradually risen with the output frequency unchanged from prior to an instantaneous power failure independently of the coasting speed of the motor.

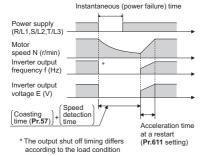
During Real sensorless vector control, the output frequency and voltage before an instantaneous power failure are output. (The Pr.58 setting is disabled.)

Automatic restart after instantaneous power failure with a PM motor 📭🚾

Pr.	GROUP	Name	Pr.	GROUP	Name
57	A702	Restart coasting time	162	A700	Automatic restart after instantaneous power failure selection
611	F003	Acceleration time at a restart			

While using an IPM motor MM-CF, the inverter can be restarted without stopping the motor.

By enabling the automatic restart after instantaneous power failure function in the following conditions, the motor can be restarted.

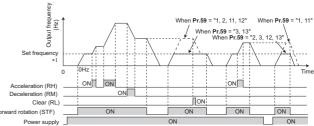

- · When an instantaneous power failure occurs during inverter operation
- When the motor is coasting at start

Pr.		Description		
Pr.	Setting range	Description		
	0	No waiting time		
57	0.1 to 30 s	Set the waiting time for the inverter to perform a restart after the power lost by an instantaneous power failure restores.		
	9999 (initial value)	No restart		
162	0 (initial value), 1, 2, 3, 1000, 1001, 1002, 1003	Frequency search only performed at the first start		
102	10, 11, 12, 13, 1010, 1011, 1012, 1013	Frequency search at every start		
611	0 to 3600 s	Set the acceleration time that takes to reach Pr.20 Acceleration/deceleration reference frequency at a restart.		
011	9999 (initial value)	Standard acceleration time (for example, Pr.7) s applied as the acceleration time at restart.		

Selection for the automatic restart (Pr.162)

The motor speed is detected (frequency search) at power restoration to start the motor smoothly. The encoder also detects the rotation direction during reverse

rotation so that the inverter can re-start smoothly.



Remote setting function

Pr.	GROUP	Name
59	F101	Remote function selection

Even if the operation panel is located away from the enclosure, contact signals can be used to perform continuous variable-speed operation, without using analog signals.

ſ			Description	
	Pr.59 setting	RH, RM, RL signal function	Frequency setting storage	Deceleration to the frequency lower than the set frequency
	0 (initial value)	Multi-speed setting	-	
	1	Remote setting	With	
	2	Remote setting	Not used	Not available
	3	Remote setting	Not used (Turning STF/STR OFF clears remotely set frequency.)	
	11	Remote setting	With	
	12	Remote setting	Not used	Available
	13	Remote setting	Not used (Turning STF/STR OFF clears remotely set frequency.)	

*1 Ext ed) or PU ru

En	Energy saving control selection					
	Magnetic flux					

Pr.	GROUP	Name
60	G030	Energy saving control selection

Inverter will perform energy saving control automatically even when the detailed parameter settings are made.

It is appropriate for an application such as a fan or pump.

Pr.60 setting	Description		
0(initial value)	Normal operation		
4	Energy saving operation+1 With the energy saving operation, the inverter will automatically control the output voltage so the inverter output power during the constant-speed operation will become minimal. (Available during V/F control)		
9	Optimum excitation control •1 The Optimum excitation control is a control method to decide the output voltage by controlling the excitation current so the efficiency of the motor is maximized. (Available during V/F control or Advanced magnetic flux vector control)		

Output current may increase slightly with the energy saving *1 operation or the Optimum excitation control since the output voltage is controlled.

Automatic acceleration/deceleration

Magnetic flux Sensorless Vector

Pr.	GROUP	Name	Pr.	GROUP	Name
61	F510	Reference current	62	F511	Reference value at acceleration
63	F512	Reference value at deceleration	64	F520	Starting frequency for elevator mode
292	F500	Automatic acceleration/ deceleration	293	F513	Acceleration/ deceleration separate selection
	A110	ueceleration			

The inverter can be operated with the auto-adjusted parameters.

- Without setting the acceleration/deceleration time or the V/F pattern, the inverter can be operated as if the appropriate value is set to each parameter. This function is useful for operating the inverter without setting detailed parameters.
- Even if automatic acceleration/deceleration has been selected, inputting the JOG signal, RT signal (second function selection), or X9 signal (third function selection) during an inverter stop will switch to the normal operation and give priority to JOG operation, second function selection or third function selection. After the motor is started by the automatic acceleration/ deceleration, none of JOG, RT, or X9 signal is accepted.

Pr.292 setting	(Operation	Automatic setting Pr.	
0 (initial value normal operation)	-		_	
1 (shortest acceleration/ deceleration)	Without brake resistor or the brake unit	Set this parameter to accelerate/decelerate the motor at the shortest	Pr.7, Pr.8	
11 (shortest acceleration/ deceleration)	With brake resistor, brake unit	time. (Stall prevention operation level 150%)	F1.7, F1.0	
3 (optimum acceleration/ deceleration)	Optimal operation inverter's capab	Pr.0, Pr.7, Pr.8		
5 (lift mode)	Stall prevention operation level 150%	The inverter output voltage is controlled so that enough torque is	Pr.0, Pr.13,	
6 (lift mode 2)	Stall prevention operation level 180%	provided during power driving and regenerative driving.	Pr.19	
7 (Brake sequence mode 1)	With machine brake opening completion signal	In this operation mode, operation timing signals of the mechanical brake		
8 (Brake sequence mode 2)	Without machine brake opening completion signal	are output from the inverter, such as for lift application.	_	

• **Pr.61** to **Pr.63** can be used to change the reference current for the shortest acceleration/deceleration and the optimal acceleration/deceleration operation.

• Use **Pr.64** to set the starting frequency for the lift operation.

 Acceleration/deceleration times can be individually calculated. Such a setting can be enabled/disabled for the shortest acceleration/deceleration operation and the optimum acceleration/deceleration.

Pr.293 setting	Description
0 (initial value)	Both the acceleration and deceleration times are calculated.
1	Only the acceleration time is calculated.
2	Only the deceleration time is calculated.

Retry function

Pr.	GROUP	Name	Pr.	GROUP	Name
65	H300	Retry selection	67	H301	Number of retries at fault occurrence
68	H302	Retry waiting time	69	H303	Retry count display erase

This function allows the inverter to reset itself and restart at activation of the protective function (fault indication). The retry generating faults can be also selected.

(This function is not available for the FR-A842-P.) When the automatic restart after instantaneous power failure function is selected (**Pr.57 Restart coasting time** \neq 9999), the restart operation is also performed after a retry operation as well as after an instantaneous power failure.

• Using **Pr.65**, you can select the fault that will cause a retry. "•" indicates the faults selected for retry.

Retry target Fault	ult Pr.65 setting					
indication	0	1	2	3	4	5
E.OC1	•	•		•	•	•
E.OC2	•	•		•	•	
E.OC3	•	•		•	•	•
E.OV1	•		•	•	•	
E.OV2	•		•	•	•	
E.OV3	•		•	•	•	
E.THM	•					
E.THT	•					
E.IPF	•				•	
E.UVT	•				•	
E. BE	•				•	
E. GF	•				•	
E.OHT	•					
E.OLT	•				•	
E.OPT	•				•	
E.OP1	•				•	
E. PE	•				•	
E.MB1	•				•	
E.MB2	•				•	
E.MB3	•				•	
E.MB4	•				•	
E.MB5	•				•	
E.MB6	•				•	
E.MB7	•				•	
E.OS	•				•	
E.OSD	•				•	
E.PTC	•					
E.CDO	•				٠	
E.SER	•				•	
E.USB	•				•	
E.ILF	٠				٠	
E.PID	•				•	
E.PCH	•				•	
E.SOT	•	•		•	•	•
E.LCI	•				•	
E.LUP	•				•	
E.LDN	•				•	
E.EHR	•				•	

• For Pr.67, set the number of retries at a fault occurrence.

Pr.67 setting	Description
0 (initial value)	No retry function
1 to 10	Set the number of retries at fault occurrence. A fault output is not provided during the retry operation.
101 to 110	Set the number of retries at fault occurrence. (The setting value minus 100 is the number of retries.) A fault output is provided during the retry operation.

• For **Pr.68**, set the waiting time (0.1 to 600 s) from a protective function activation to a retry.

 By reading Pr.69, the number of successful restarts made by retries can be obtained. Refer to the page on Pr.22

Pr. 66

Pr. 67 to 69

	<mark>۲.</mark>	GROUP	Name	Pr.	GROUP	Name
71	1	C100	Applied motor	450	C200	Second applied motor

Setting of the applied motor selects the thermal characteristic appropriate for the motor. When using a constant-torque or PM motor, the electronic thermal O/L relay is set according to the used motor.

				crement constant	char the	Operational characteristic of the electronic thermal O/L relay		
Pr.71	Pr.450	Applied moto	or	Setting increment for motor constant	Standard	Constant- torque	Mq	
(Pr.71	0 l initial lue)	Standard motor (such as SF-JR)			0			
	1	Constant-torque motor (SF-JRCA, etc.) SF-V5RU (except for 1500 r/min seri				0		
2	-	Standard motor (such as S Adjustable 5 points V/F (Refer to page 138)	SF-JR)		0			
2	20	Mitsubishi Electric standar (SF-JR 4P 1.5kW or lower			0			
3	30	Vector control dedicated m SF-V5RU (1500 r/min series) SF-THY	notor	Ω,mΩ, ·mH,%,		0		
4	40	Mitsubishi Electric high-eff SF-HR	iciency motor	A,mV	0			
ł	50	Mitsubishi Electric constant SF-HRCA	-torque motor			0		
7	70	Mitsubishi Electric high-pe energy-saving motor SF-PR			0			
33	30 *1	IPM motor MM-CF				0		
80	090	IPM motor (other than MM			0			
90	090	SPM motor			0			
3	, 4	Standard motor (such as S	SF-JR)		0			
13	, 14	Constant-torque motor (SF-JRCA, etc.) SF-V5RU (except for 1500 r/min seri			0			
23	, 24	Mitsubishi Electric standar (other than SF-JR 4P 1.5k			0			
33	, 34	Vector control dedicated m SF-V5RU (1500 r/min series) SF-THY	notor	Internal		0		
43, 44		Mitsubishi Electric high-eff SF-HR		data	0			
53	, 54	Mitsubishi Electric constant-torque motor SF-HRCA				0		
	, 74	Mitsubishi Electric high-performance energy-saving motor SF-PR				0		
,	334*1	IPM motor MM-CF				ļ	0	
	, 8094	IPM motor (other than MM	-CF)		<u> </u>	0		
9093, 9094 5		SPM motor Standard motor	Stor		0	0		
	5 15	Constant-torque motor	Star connection		0	0		
	6	Standard motor	Delta	Ω,mΩ,A	0	-		
- 1	16	Constant-torque motor	connection			0		
-	9999 (initial value)	No second applied motor						

The setting is available for FR-A820-00630(11K) or lower

• When initial values are set in Pr.0 and Pr.12, the Pr.0 and Pr.12 settings are automatically changed by changing the Pr.71 setting.

Carrier frequency and Soft-PWM selection

Pr.	GROUP	Name	Pr.	GROUP	Name
72	E600	PWM frequency selection	240	E601	Soft-PWM operation selection
260	E602	PWM frequency automatic switchover			

The motor sound can be changed.

Pr.	Setting range	Description			
72 *3	0 to 15*1	The PWM carrier frequency can be changed. The setting displayed is in [kHz]. Note that 0 indicates 0.7			
12*3	0 to 6, 25*2	kHz, 15 indicates 14.5 kHz, and 25 indicates 2.5 kHz. (When using an optional sine wave filter, set "25".)			
240	0	Soft-PWM disabled			
240	1 (initial value)	Soft-PWM enabled			
260 *3	0	PWM carrier frequency automatic reduction function disabled (for the LD, ND, or HD rating)			
200*3	1 (initial value)	PWM carrier frequency automatic reduction function enabled			

- The setting range for the FR-A820-03160(55K) or lower and FR-*1
- A840-01800(55K) or lower *2
 - The setting range for the FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher.
- Not available for the FR-A842-P. *3
- Under Real sensorless vector control, vector control, and PM sensorless vector control, the following carrier frequencies are used. (For the control method and fast-response operation selection, refer to Pr.800 Control method selection refer to page 135

Pr.72	Carrier frequency (kHz)					
setting	Real sensorless vector control, vector control	PM sensorless vector control	fast-response operation selection			
0 to 5	2	6 *4				
6, 7	6*5	6				
8, 9	0*5	0	4			
10 to 13	10*5	10				
14, 15	14*5	14				

- When low-speed range high-torque characteristic is disabled (Pr.788="0"), 2 kHz is used. In the low-speed range (3 Hz or lower) under Real sensorless
- *5 vector control, the carrier frequency is automatically changed to 2 kHz. (For FR-A820-00490(7.5K) or lower and FR-A840-00250(7.5K) or lower)
- PWM carrier frequency automatic reduction function (Pr.260) Setting Pr.260="1 (initial value)" will enable the PWM carrier frequency auto-reduction function. If a heavy load is continuously applied while the inverter carrier frequency is set to 3 kHz or higher (**Pr.72** \geq "3"), the carrier frequency is automatically reduced to prevent occurrence of the inverter overload trip (electronic thermal O/L relay function) (E.THT). The carrier frequency is reduced to as low as 2 kHz. (Motor noise increases, but not to the point of failure.)
- When the PWM carrier frequency automatic reduction function is used, the operation with the carrier frequency set to 3 kHz or higher (Pr.72 \geq "3") automatically reduces the carrier frequency for heavy-load operation as shown below.

Pr.260	Pr.570	Carrier frequency autom	natic reduction operation		
setting setting		FR-A820-04750(90K) or lower, FR-A840-02600(90K) or lower	FR-A840-03250(110K) or higher		
	0 (SLD), 1 (LD)	Continuous operation with the 85% or higher inverter rated cu reduces the carrier frequency automatically.			
1	1 2 (ND), higher inverter rated current for 3 (HD) the ND rating reduces the carrier frequency automatically.		Continuous operation with the 85% or higher inverter rated current reduces the carrier frequency automatically.		
	0 (SLD)	Continuous operation with the 85% or higher inverter rated current reduces the carrier frequency automatically.			
	1 (LD)	Without carrier frequency automatic reduction (Perform continuous operation with the carrier frequency set to 2 or lower or with less than 85% of the rated inverter current.)			
0	2 (ND), Without carrier frequency 3 (HD) automatic reduction		Without carrier frequency automatic reduction (Perform continuous operation with the carrier frequency set to 2 kHz or lower or with less than 85% of the rated inverter current.)		

In the low-speed range (about 10 Hz or lower), the carrier frequency may be automatically lowered. Motor noise increases, but not to the point of failure.

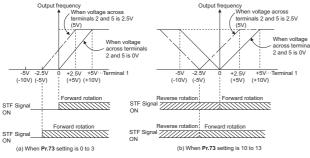
Analog input selection

Pr.	GROUP	Name	Pr.	GROUP	Name
73	т000	Analog input selection	267	T001	Terminal 4 input selection
242	T021	Terminal 1 added compensation amount (terminal 2)	243	T041	Terminal 1 added compensation amount (terminal 4)
252	T050	Override bias	253	T051	Override gain

The analog input terminal specifications, the override function, and the function to switch forward/reverse rotation by the input signal polarity can be set.

Concerning terminals 2 and 4 used for analog input, the voltage input (0 to 5 V, 0 to 10 V) and current input (0 to 20 mA) are selectable. To input a voltage (0 to 5 V/ 0 to 10 V), set the voltage/current input switch OFF. To input a current (0 to 20 mA), set the voltage/current input switch ON and change the parameters (**Pr.73**, **Pr.267**).

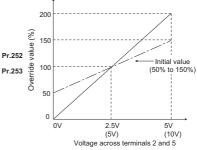
Addition compensation or fixed ratio analog compensation (override) with terminal 2 set to auxiliary input is applicable to the multi-speed operation or terminal 2/terminal 4 speed setting signal (main speed). (Bold frame indicates the main speed setting.)


Pr.73 setting	Terminal 2 input	Switch 1	Terminal 1 input	Compensation input terminal compensation method	Polarity reversible	
0	0 to 10 V	OFF	0 to ±10 V			
1 (initial value)	0 to 5 V	OFF	0 to ±10 V	Terminal 1 Addition	Not applied (state in which a	
2	0 to 10 V	OFF	0 to ±5 V	compensation	negative	
3	0 to 5 V	OFF	0 to ±5 V		polarity	
4	0 to 10 V	OFF	0 to±10 V	Terminal 2	frequency command	
5	0 to 5 V	OFF	0 to ±5 V	Override	signal is not	
6	0 to 20 mA	ON	0 to ±10 V		accepted)	
7	0 to 20 mA	ON	0 to ±5 V			
10	0 to 10 V	OFF	0 to ±10 V	Terminal 1 Addition		
11	0 to 5 V	OFF	0 to ±10 V	compensation		
12	0 to 10 V	OFF	0 to ±5 V			
13	0 to 5 V	OFF	0 to ±5 V			
14	0 to 10 V	OFF	0 to ±10 V	Terminal 2	Applied	
15	0 to 5 V	OFF	0 to ±5 V	Override		
16	0 to 20 mA	ON	0 to ±10 V	Terminal 1		
17	0 to 20 mA	ON	0 to ±5 V	Addition compensation		

• Turning ON the Terminal 4 input selection (AU) signal sets terminal 4 to the main speed.

 Set the **Pr.267** and voltage/current input switch setting according to the table below.

Pr.267 setting	Terminal 4 input	Switch 2
0 (initial value)	4 to 20 mA	ON
1	0 to 5 V	OFF
2	0 to 10 V	OFF


Addition compensation (**Pr.242**, **Pr.243**) A compensation signal is addable to the main speed setting for such as synchronous or continuous speed control operation.

Terminal 1 (frequency setting auxiliary input) is added to terminal 2 or 4 main speed setting signal.

Override function (Pr.252, Pr.253)

When the override setting is selected, terminal 1 or 4 is set to the main speed setting, and terminal 2 is set to the override signal. (If the main speed of terminal 1 or 4 is not input, the compensation by terminal 2 is disabled.)

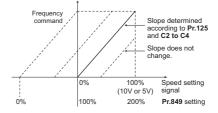
• When **Pr.868 (Pr.858)** = "4", the terminal 1 (terminal 4) values are set to the stall prevention operation level.

Analog input responsiveness and noise elimination

Pr.	GROUP	Name	Pr.	GROUP	Name
74	T002	Input filter time constant	822	Т003	Speed setting filter 1
826	T004	Torque setting filter 1	832	T005	Speed setting filter 2
836	Т006	Torque setting filter 2	849	Т007	Analog input offset adjustment

The frequency command/torque command response level and stability are adjustable by using the analog input (terminals 1, 2, and 4) signal.

• **Pr.74** is effective to eliminate noise on the frequency setting circuit.


Increase the filter time constant if steady operation cannot be performed due to noise, etc.

- A larger setting results in slower response. (The time constant can be between 0 and 8, which are about 2 ms to 1 s.)
- Set the primary delay filter time constant to the external speed command (analog input command) by using **Pr.822** or **Pr.832**. Set a larger time constant when delaying the speed command tracking or the analog input voltage is unstable.
- Set the primary delay filter time constant to the external torque command (analog input command) by using **Pr.826** or **Pr.836**. Set a larger time constant when delaying the torque command tracking or the analog input voltage is unstable.
- Set a value other than "9999" in **Pr.832** and **Pr.836**, which are enabled when the RT signal is ON.
- Setting Pr.849 will offset the analog speed input (terminal2) and avoid the occurrence of a frequency command due to noise when the 0-speed command is given.

The offset voltage is positive when 100% < **Pr.849** and negative when **Pr.849** < 100%. The detailed calculation of the offset voltage is as described below:

Offset voltage [V] =

Voltage at the time of 100% (5 V or 10 V*1) × (**Pr.849** - 100)/100 *1 It depends on the **Pr.73** setting.

Reset selection/disconnected PU detection/PU stop selection

Pr.	GROUP	Name			
75	E100	Reset selection			
75	E101	Disconnected PU detection			
75	E102	PU stop selection			
75	E107	Reset limit			
75	-	Reset selection/ disconnected PU detection/ PU stop selection			

The reset input acceptance, disconnected PU (FR-DU08/FR-PU07) connector detection function and PU stop function can be selected.

Pr.75 setting	Reset selection	Disconnected PU detection	PU stop selection	
0, 100	Reset input always enabled	Operation continues even		
1, 101	Reset input enabled only when protective function activated	when PU is disconnected.	Decelerates to a stop when STOP	
2, 102	Reset input always enabled	Inverter output shut	is input in PU operation mode	
3, 103	Reset input enabled only when protective function activated	off when PU disconnected.	only.	
14 (Initial value), 114	Reset input always enabled	Operation continues even	Decelerates to a stop when Stop?	
15, 115	Reset input enabled only when protective function activated	when PU is disconnected.		
16, 116	Reset input always enabled	Inverter output shut	the PU, external and communication operation modes.	
17, 117	Reset input enabled only when protective function activated	off when PU disconnected.		

• Reset selection (P.E100)

When **P.E100** = "1" or **Pr.75** = "1, 3, 15, 17, 100, 101, 103, 115, or 117" is set, reset (reset command via RES signal or communication) input is enabled only when the protective

function is activated. Disconnected PU detection (**P.E101**)

If the PU (FR-DU08/FR-PU07) is detected to be disconnected from the inverter for 1 s or longer while **P.E101** = "1" or **Pr.75** = "2, 3, 16, 17, 102, 103, 116, or 117", PU disconnection (E.PUE) is displayed and the inverter output is shut off.

• PU stop selection (P.E102)

Stop can be performed by inputting **Stop** from the PU in any of the operation modes of PU operation, External operation and network operation.

Reset limit function (P.E107)

When **Pr.75** = any of "100 to 103 and 114 to 117", if an electronic thermal O/L relay or an overcurrent protective function (E.THM, E.THT, E.OC[]) is activated while one of them has been already activated within 3 minutes, the inverter will not accept any reset command (RES signal, etc.) for about 3 minutes from the second activation.

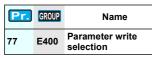
The reset limit function is available with the FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher.

Fault code output function

Pr.	GROUP	Name
76	M510	Fault code output selection

When a fault occurs, the corresponding data can be output as a 4-bit digital signal using via an open collector output terminal. The fault code can be read using a programmable controller, etc., and countermeasures can be displayed on the HMI (Human Machine Interface), etc.

Pr.76 setting	Description		
0 (initial value)	Without fault code output		
1	With fault code output (Refer to the table below.)		
2	Fault code is output only when a fault occurs. (Refer to the table below.)		


The fault codes that can be output are shown in the table below.
 (0: Output transistor OFF, 1: Output transistor ON)

Operation panel	Outp	ut termi	nal oper	ation	Fault code
indication (FR- DU08)	SU	IPF	OL	FU	Fault code
Normal *1	0	0	0	0	0
E.OC1 E.OCT	0	0	0	1	1
E.OC2	0	0	1	0	2
E.OC3	0	0	1	1	3
E.OV1 to E.OV3 E.OVT	0	1	0	0	4
E.THM	0	1	0	1	5
E.THT	0	1	1	0	6
E.IPF	0	1	1	1	7
E.UVT	1	0	0	0	8
E.FIN	1	0	0	1	9
E.BE	1	0	1	0	А
E. GF	1	0	1	1	В
E.OHT	1	1	0	0	С
E.OLT	1	1	0	1	D
E.OPT E.OP1	1	1	1	0	E
Other than the above	1	1	1	1	F

*1 When **Pr.76** = "2", the terminal outputs the signal assigned by **Pr.191** to **Pr.194** in normal operation.

9

Parameter write selection

Whether to enable the writing to various parameters or not can be selected. Use this function to prevent parameter values from being rewritten by misoperation.

Pr.77 setting	Description		
0 (initial value)	Writing is enabled only during stop.		
1	Parameter writing is disabled.		
2	Parameter writing is enabled in any operation mode regardless of the operation status. (Writing is disabled for some parameters.)		

Reverse rotation prevention selection

Pr. GROUP		Name
78	D020	Reverse rotation prevention selection

This function can prevent reverse rotation fault resulting from the incorrect input of the start signal.

Pr.78 setting	Description		
0 (initial value)	Both forward and reverse rotations allowed		
1	Reverse rotation disabled		
2	Forward rotation disabled		

Operation mode selection

Pr. GROUP Name	Pr.	GROUP	Name
79 D000 Operation mode selection	340	D001	Communication startup mode selection

Select the operation mode of the inverter.

The mode can be changed among operations using external signals (External operation), operation by operation panel (FR-DU08) or parameter unit (FR-PU07) (PU operation), combined operation of PU operation and External operation (External/PU combined operation), and Network operation (when RS-485 terminals or communication option is used).

Pr.79 setting		Description		LED display : OFF : ON
0 (initial value)	Use the Extern to switch betw operation moo At power ON, operation moo	PU operation mode PU EXT NET External operation mode PU EXT NET operation mode PU EXT NET operation		
	Operation mode	Frequency command	Start command	
1	PU operation mode fixed	Operation panel (FR-DU08) and PU(FR-PU07)	FWD or REV on PU (FR-DU08/FR- PU07)	PU operation mode PU EXT NET
2	External operation mode fixed. The operation can be performed by switching between the External and NET operation modes.	External signal input (terminal 2 and 4, JOG, multi- speed selection, etc.)	External signal input (terminal STF, STR)	External operation mode PU • EXT • NET NET operation mode • PU • EXT • NET
3	External/PU combined operation mode 1	External/PU combined operation mode		
4	External/PU combined operation mode 2	● PU ● EXT ● NET		
6	Switchover me Switching of F modes can be	PU operation mode		
7	External opera interlock) X12 signal ON mode enablec output shutoff X12 signal OF mode disablec	NET External operation mode PU EXT NET NET Operation mode PU EXT NET		

 Selecting the operation mode for power-ON (Pr.340)
 When power is switched ON or when power comes back ON after an instantaneous power failure, the inverter can be started up in the Network operation mode.

After the inverter starts up in Network operation mode, parameter writing and operation can be commanded from programs. Set this mode when performing communication operation using

the RS-485 terminals or a communication option. Use **Pr.79** and **Pr.340** to set the operation mode at power-ON

(reset).

Pr.340 setting	Pr.79 setting	Operation mode at power-ON, at power restoration, or after a reset.	Operation mode switching			
0 (initial value)	Follows the Pr.79 setting.					
	0	NET operation mode	Switching among the External, PU, and NET operation modes is enabled _{*2}			
	1	PU operation mode	PU operation mode fixed			
	2	NET operation mode	Switching between the External and NET operation modes is enabled. Switching to PU operation mode is disabled			
1, 2 •1	3, 4	External/PU combined operation mode	Operation mode switching is disabled			
.,	6	NET operation mode	Switching among the External, PU, and NET operation mode is enabled while running.			
	7	X12 (MRS) signal ON NET operation mode	Switching among the External, PU, and NET operation modes is enabled			
		X12 (MRS) signal OFF External operation mode	External operation mode fixed (Forcibly switched to External operation mode)			
	0	NET operation mode	Switching between the PU and NET operation mode is enabled *3			
	1	PU operation mode	PU operation mode fixed			
	2	NET operation mode	NET operation mode fixed			
10, 12 *1	3, 4	External/PU combined operation mode	Operation mode switching is disabled			
	6	NET operation mode	Switching between the PU and NET operation mode is enabled while running _{*3}			
	7	External operation mode	External operation mode fixed (Forcibly switched to External operation mode)			

*1 Use **Pr.340** = "2 or 12" setting to perform communication with the RS-485 terminals. Even if an instantaneous power failure occurs while **Pr.57 Restart**

coasting time≠ "9999" (with automatic restart after instantaneous power failure), the inverter continues operation at the condition before the instantaneous failure.

*2 The operation mode cannot be directly changed between the PU operation mode and Network operation mode.

*3 Switching between the PU and NET operation modes is available

with the $\begin{bmatrix} PU \\ EXT \end{bmatrix}$ key on the operation panel (FR-DU08) and the X65 signal.

Changing the control method

Pr.	GROUP	Name	Pr.	GROUP	Name
71	C100	Applied motor	80	C101	Motor capacity
81	C102	Number of motor poles	83	C104	Rated motor voltage
84	C105	Rated motor frequency	89	G932	Speed control gain (Advanced magnetic flux vector)
450	C200	Second applied motor	451	G300	Second motor control method selection
453	C201	Second motor capacity	454	C202	Number of second motor poles
569	G942	Second motor speed control gain	800	G200	Control method selection
862	C242	Encoder option selection			

Select the inverter control method.

Pr.80							
(Pr.453), Pr.81 (Pr.454)	Pr.71 (Pr.450)	Pr.800 setting *1	Pr.451 setting *1	Control method	Control mode		
		0, 100			Speed control		
		1, 101			Torque control		
		2, 102			Speed control/ torque control switchover		
		3, 103			Position control		
		4, 104		Vector control*2	Speed control/ position control switchover		
		5, 105			Position control/ torque control switchover		
	Induction motor _{*3}	6, 106			Torque control (variable- current limiter control)		
		9, 109	-	Vector control tes	t operation		
		10, 110			Speed control		
		11, 111 12, 112		Real sensorless	Torque control		
				vector control	Speed control/ torque control switchover		
		20 (initial value)	20	Advanced magnetic flux vector control	Speed control		
Other than 9999		-	9999 (initial value)	Advanced magnetic flux vector control for the second motor			
	IPM motor (MM-CF) *4	9, 109	-	PM sensorless vector control test operation			
		13, 113			Position control _{*7}		
		14, 114		PM sensorless vector control	Speed control/ position control switchover*7		
		20 (initial value), 110	20, 110		Speed control		
		9, 109	-	PM sensorless ve operation	ctor control test		
	IPM/SPM motor (other than MM- CF)*5	20 (initial value), 110		PM sensorless vector control Speed contro			
		0 to 6, 100 to 106		Vector control (Refer to the Instruction Manual of the FR- A8APR.)			
	IPM/SPM motor	- (initial value)		The setting value of Pr.800 is us for the second motor. (PM sensorless vector control (speed control) when Pr.800 ="\$ 109")			
9999∗₀ (initial value)	-	-		V/F control			

- The setting values of 100 and above are used when the fast-*1 response operation is selected.
- A vector control compatible option is required. *2
- *3 For induction motors, the operation for the setting of Pr.800 (**Pr.451**) = "10 or 110", special control under Real sensoriess vector control, is performed when **Pr.800** (**Pr.451**) = "13, 14, 113, or 114"
- For IPM motors (MM-CF), the operation for the setting of **Pr.800** (**Pr.451**) = "20 or 110", speed control under PM sensorless vector control, is performed when a value other than "9, 13, 14, 109, *4
- 113, 114, or 9999" is set in **Pr.800 (Pr.451**). For IPM/SPM motors (other than MM-CF), the operation for the setting of **Pr.800 (Pr.451)** = "20 or 110", speed control under PM *5 sensorless vector control, is performed when a value other than "9, 109, or 9999" is set in **Pr.800 (Pr.451)**. V/F control when **Pr.80** or **Pr.81** is "9999", regardless of the **Pr.800** setting. When **Pr.71** is set to the IPM motor MM-CF, PM
- *6 sensorless vector control is enabled even if Pr.80 ≠ "9999" or Pr.81 = "9999"
- Setting Pr.788 (Pr.747)Low speed range torque characteristic *7 selection = "0" (ILow-speed range high-torque characteristic disabled) selects speed control.
- · Set Pr.89 (Pr.569) to make adjustments to keep the motor speed constant during variable load operation under Advanced magnetic flux vector control.
- The second motor control method can also be selected by the RT signal.
- The Pr.22 function changes according to the Pr.800 setting (stall prevention operation level/torque limit level).
- Setting Pr.800 (Pr.451) = "any of 100 to 105 or 109 to 114" selects the fast-response operation. The fast-response operation is available during vector control, Real sensorless vector control, and PM sensorless vector control.
 - (During fast-response operation, the carrier frequency is always 4 kHz. During fast-response operation, continuous operation with 100% inverter rated current is not possible. (E.THT is likely to occur.))
- Using the FR-A8TP together with the FR-A8AP/FR-A8AL/FR-A8APR enables vector control by switching between two encoder-equipped motors.

Offline auto tuning

Pr.	GROUP	Name	Pr.	GROUP	Name
82	C125	Motor excitation current	83	C104	Rated motor voltage
84	C105	Rated motor frequency	90	C120	Motor constant (R1)
91	C121	Motor constant (R2)	92	C122	Motor constant (L1)/ d-axis inductance (Ld)
93	C123	Motor constant (L2)/ q-axis inductance (Lq)	94	C124	Motor constant (X)
96	C110	Auto tuning setting/ status	455	C225	Second motor excitation current
456	C204	Rated second motor voltage	457	C205	Rated second motor frequency
458	C220	Second motor constant (R1)	459	C221	Second motor constant (R2)
460	C222	Second motor constant (L1) / d-axis inductance (Ld)	461	C223	Second motor constant (L2) / q-axis inductance (Lq)
462	C224	Second motor constant (X)	463	C210	Second motor auto tuning setting/status
859	C126	Torque current/Rated PM motor current	860	C226	Second motor torque current/Rated PM motor current
9	C103	Electronic thermal O/ L relay	51	C203	Second electronic thermal O/L relay
71	C100	Applied motor	80	C101	Motor capacity
81	C102	Number of motor poles	298	A711	Frequency search gain
450	C200	Second applied motor	453	C201	Second motor capacity
454	C202	Number of second motor poles	560	A712	Second frequency search gain
684	C000	Tuning data unit switchover	702	C106	Maximum motor frequency
706	C130	Induced voltage constant (phi f)	707	C107	Motor inertia (integer)
711	C131	Motor Ld decay ratio	712	C132	Motor Lq decay ratio
717	C182	Starting resistance tuning compensation	721	C185	Starting magnetic pole position detection pulse width
724	C108	Motor inertia (exponent)	725	C133	Motor protection current level
738	C230	Second motor induced voltage constant (phi f)	739	C231	Second motor Ld decay ratio
740	C232	Second motor Lq decay ratio	741	C282	Second starting resistance tuning compensation
742	C285	Second motor magnetic pole detection pulse width	743	C206	Second motor maximum frequency
744	C207	Second motor inertia (integer)	745	C208	Second motor inertia (exponent)
746	C233	Second motor protection current level	1002	C150	Lq tuning target current adjustment coefficient
1412	C135	Motor induced voltage constant (phi f) exponent	1413	C235	Second motor induced voltage constant (phi f) exponent

Offline auto tuning operation can be executed to automatically calculate the motor constant under Advanced magnetic flux vector control, Real sensorless vector control, vector control, or PM sensorless vector control.

Offline tuning is necessary under Real sensorless vector control. Also, when the automatic restart after instantaneous power failure or flying start function is used under V/F control or with an IPM motor MM-CF, offline auto tuning improves the precision of the frequency search for motor speed detection.

Pr. 96 setting	Description
0 (initial value)	No offline auto tuning
1 *1	Performs offline auto tuning without rotating the motor
101 *1	Performs offline auto tuning by rotating the motor
11 *2	Performs offline auto tuning without rotating the motor (V/F control, PM sensorless vector control (IPM motor MM-CF)).

 *1 For Advanced magnetic flux vector control, Real sensorless vector control and vector control
 *2 For V/F control and PM sensorless vector control

- *2 For V/F control and PM sensorless vector control
 The offline tuning data (motor constants) can be copied to another inverter with the operation panel (FR-DU08).
- Even if a motor other than Mitsubishi Electric standard motors (SF-JR 0.4 kW or higher), high-efficiency motors (SF-HR 0.4 kW or higher), Mitsubishi Electric constant-torque motors (SF-JRCA 4P, SF-HRCA 0.4 kW to 55 kW), Mitsubishi Electric highperformance energy-saving motor SF-PR, or Mitsubishi Electric vector-dedicated motors (SF-V5RU (1500 r/min series)), such as other manufacturers' induction motors, SF-JRC, SF-TH, etc., is used, or when the wiring length is long (approx. 30 m or longer), an inductive motor can run with the optimum operation characteristics by using the offline output turing function
- characteristics by using the offline auto tuning function.
 The offline auto tuning enables the operation with SPM motors and IPM motors other than MM-CF when using the PM motor. When using a PM motor other than the IPM motor MM-CF series, offline auto tuning must be performed.
- When using an induction motor, the motor rotation can be locked (**Pr.96** = "1, 11") or unlocked (**Pr.96** = "101").
 - The tuning is more accurate when the motor can rotate (unlocked).
- Requirements for offline auto tuning
 - A motor is connected.
 - For the motor capacity, the rated motor current should be equal to or less than the inverter rated current. (It must be 0.4 kW or higher.)

Using a motor with the rated current substantially lower than the inverter rated current will cause torque ripples, etc. and degrade the speed and orque accuracies. As a reference, select the motor with the rated motor current that is about 40% or higher of the inverter rated current.

- The highest frequency is 400 Hz.
- The target motor is other than a high-slip motor, a high-speed motor, or a special motor.
- When using an induction motor, check the following points if Pr.96 (Pr.463) = "101" (Perform offline auto tuning by rotating the motor) is selected.
 - Torque is not sufficient during tuning.
 - The motor can be rotated up to the frequency close to the motor rated frequency (**Pr.84** setting value).
- The brake is released.
 The motor may rotate slightly even if **Pr.96 (Pr.463)** = "1, 11" (performs tuning without rotating the motor) is selected. Fix the motor securely with a mechanical brake, or before tuning, make sure that it is safe even if the motor rotates.

Make sure to perform the above especially in vertical lift applications.

Note that if the motor runs slightly, tuning performance is unaffected.

Excitation current low-speed scaling

factor Magnetic flux Sensorless

Pr.	GROUP	Name	Pr.	GROUP	Name
85	G201	Excitation current break point	86	G202	Excitation current low-speed scaling factor
617	G080	Reverse rotation excitation current low-speed scaling factor	565	G301	Second motor excitation current break point
566	G302	Second motor excitation current low-speed scaling factor	14	G003	Load pattern selection

Under Advanced magnetic flux vector control or Real sensorless vector control, the excitation current scaling factor in the low-speed range can be adjusted.

Pr.	Setting range		Description				
	0 (initial value)		For constant-torque load*1				
	1		For variable-torque load*1				
	2	Excitation current	For constant-torque lift (boost at reverse rotation: 0%)*1				
	3	low-speed scaling	For constant-torque lift (boost at forward rotation: 0%)*1				
	4	factor: Pr.86	RT signal ONfor constant-torque load RT signal OFFfor constant-torque lift (boost at reverse rotation: 0%)*1				
	5		RT signal ONfor constant-torque load RT signal OFFfor constant-torque lift (boost at forward rotation: 0%)*1				
14	12*2	Forward rotation excitation current low-speed scaling factor: Pr.86 Reverse rotation excitation current low-speed scaling factor: Pr.617					
	13*2	Forward rotation excitation current low-speed scaling factor: Pr.617 Reverse rotation excitation current low-speed scaling factor: Pr.86					
	14*2	Forward rotation excitation current low-speed scaling factor: Pr.86 Reverse rotation excitation current low-speed scaling factor: Pr.617 (X17-OFF), Pr.86 (X17 signal-ON)					
	15*2	Forward rotation excitation current low-speed scaling factor: Pr.617 (X17-OFF), Pr.86 (X17 signal-ON) Reverse rotation excitation current low-speed scaling factor: Pr.86					
	0 to 400 Hz	Set the frequency at which increased excitation is started.					
85	9999 (initial value)	frequency is	IR/SF-HRCA motor: The predetermined applied. than the above: 10 Hz is applied.				
	0 to 300%	Set an excita	ation current scaling factor at 0 Hz.				
86	9999 (initial value)	SF-PR/SF-HR/SF-HRCA motor: The predetermined scaling factor is applied. Motor other than the above: 130% is applied.					
617	0 to 300%	Set an excitation current scaling factor when different excitation current scaling factors are used for forward and reverse rotation.					
017	9999 (initial value)	SF-PR/SF-HR/SF-HRCA motor: The predetermined scaling factor is applied. Motor other than the above: 130% is applied.					
	0 to 400 Hz	signal is ON					
565	9999 (initial value)	frequency is	IR/SF-HRCA motor: The predetermined applied. than the above: 10 Hz is applied.				

Pr.	Setting range	Description
	0 to 300%	Set an excitation current low-speed scaling factor when the RT signal is ON.
566	9999 (initial value)	SF-PR/SF-HR/SF-HRCA motor: The predetermined scaling factor is applied. Motor other than the above: 130% is applied.

 *1 The setting is applied to the operation under V/F control.
 *2 The setting is valid only under Advanced magnetic flux vector control or Real sensorless vector control. When Pr.14 = "12 to 15" and V/F control is selected, the operation is the same as the one for constant-torque load (Pr.14 = "0").

Pr. 89

Refer to the page on Pr.80.

Online auto tuning

Magnetic flux Sensorless Vector

Pr.	GROUP	Name	Pr.	GROUP	Name
95	C111	Online auto tuning selection	574	C211	Second motor online auto tuning

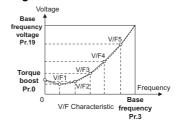
If online auto tuning is selected, favorable torque accuracy is retained by adjusting temperature even when the resistance value varies due to increase in the motor temperature.

When vector control is used, select the magnetic flux observer.

Pr.95	Pr.574	Description			
0 (initial value)		Do not perform online auto tuning			
1		Perform online auto tuning at startup			
2		Magnetic flux observer (tuning always)			

- Perform offline auto tuning before performing online auto tuning at startup.
- When performing the online auto tuning at start for a lift, consider utilization of a brake sequence function for the brake opening timing at a start or tuning using the external terminal. The tuning is completed in approximately 500 ms at the maximum after the start. Not enough torque may be provided during that period. Caution is required to prevent the object from dropping.
- Offline auto tuning is not necessary if selecting magnetic flux observer for the SF-V5RU, SF-JR (with encoder), SF-HR (with encoder), SF-JRCA (with encoder) or SF-HRCA (with encoder). (However, when the wiring length is long (30 m or longer as a reference), perform offline auto tuning so that the resistance for the wiring length can be reflected to the control.)

Pr.96 Prefer to the page on Pr.82.


Adjustable 5 points V/F Magnetication

Pr.	GROUP	Name	Pr.	GROUP	Name
71	C100	Applied motor	100	G040	V/F1 (first frequency)
101	G041	V/F1 (first frequency voltage)	102	G042	V/F2 (second frequency)
103	G043	V/F2 (second frequency voltage)	104	G044	V/F3 (third frequency)
105	G045	V/F3 (third frequency voltage)	106	G046	V/F4 (fourth frequency)
107	G047	V/F4 (fourth frequency voltage)	108	G048	V/F5 (fifth frequency)
109	G049	V/F5 (fifth frequency voltage)			

By setting a desired V/F characteristic from the start up to the base frequency or base voltage with the V/F control (frequency voltage/ frequency), a dedicated V/F pattern can be generated.

Optimal V/F patterns that match the torque characteristics of the facility can be set.

- Set Pr.71 = "2" and set a voltage and frequency in Pr.100 to Pr.109.
- Read only error (*E* r⁻¹) is generated when the frequency value for each point is the same. Also, set the frequency and voltage within the range of **Pr.3 Base frequency** and **Pr.19 Base frequency voltage**.

 At the time of Pr.19 Base frequency voltage = "8888, 9999", setting of Pr.71 = "2" cannot be made. When setting Pr.71 = "2", set the rated voltage value in Pr.19.

Pr. 110, 111	Refer to the page on Pr.7.
Pr. 112 💙	Refer to the page on Pr.0.
Pr. 113 💙	Refer to the page on Pr.3.
Pr. 114, 115	Refer to the page on Pr.22.
Pr. 116 📏	Refer to the page on Pr.41.

9

Initial settings for communication

Pr.	GROUP	Name	Pr.	GROUP	Name
		PU communication		_	PU communication
117	N020	station number PU communication	118	N021	speed PU communication
119	N022	data length	119	N023	stop bit length
119	-	PU communication stop bit length / data length	120	N024	PU communication parity check
121	N025	PU communication retry count	122	N026	PU communication check time interval
123	N027	PU communication waiting time setting	124	N028	PU communication CR/LF selection
331	N030	RS-485 communication station number	332	N031	RS-485 communication speed
333	N032	RS-485 communication data length	333	N033	RS-485 communication stop bit length
333	-	RS-485 communication stop bit length / data length	334	N034	RS-485 communication parity check selection
335	N035	RS-485 communication retry count	336	N036	RS-485 communication check time interval
337	N037	RS-485 communication waiting time setting	341	N038	RS-485 communication CR/ LF selection
342	N001	Communication EEPROM write selection	343	N080	Communication error count
349	N010	Communication reset selection	349	N240	Ready bit status selection
349	-	Communication reset selection/Ready bit status selection/ Reset selection when inverter errors cleared	434	N110	Network number (CC- Link IE)
434	N700	IP address 1	435	N111	Station number (CC- Link IE)
435	N701	IP address 2	436	N702	IP address 3
437	N703	IP address 4	438	N710	Sub-network mask 1
439	N711	Sub-network mask 2	440	N712	Sub-network mask 3
441	N713	Sub-network mask 4	500	N011	Communication error execution waiting time
501	N012	Communication error occurrence count display	502	N013	Stop mode selection at communication error
539	N002	MODBUS RTU communication check time interval	541	N100	Frequency command sign selection
544	N103	CC-Link extended setting	549	N000	Protocol selection
779	N014	Operation frequency during communication error	1434	N600	Ethernet IP address 1
1435	N601	Ethernet IP address 2	1436	N602	Ethernet IP address 3
1437	N603	Ethernet IP address 4	1438	N610	Subnet mask 1
1439	N611	Subnet mask 2	1440	N612	Subnet mask 3
1441	N613	Subnet mask 4	1427	N630	Ethernet function selection 1
1428	N631	Ethernet function selection 2	1429	N632	Ethernet function selection 3
1426	N641	Link speed and duplex mode selection	1455	N642	Keepalive time
1431	N643	Ethernet signal loss detection function selection	1432	N644	Ethernet communication check time interval
1424	N650	Ethernet communication network number	1425	N651	Ethernet communication station number

Pr.	GROUP	Name	Pr.	GROUP	Name
1442	N660 N760	Ethernet IP filter address 1	1443	N661 N761	Ethernet IP filter address 2
1444	N662 N762	Ethernet IP filter address 3	1445	N663 N763	Ethernet IP filter address 4
1446	N664 N764	Ethernet IP filter address 2 range specification	1447	N665 N765	Ethernet IP filter address 3 range specification
1448	N666 N766	Ethernet IP filter address 4 range specification	1449	N670	Ethernet command source selection IP address 1
1450	N671	Ethernet command source selection IP address 2	1451	N672	Ethernet command source selection IP address 3
1452	N673	Ethernet command source selection IP address 4	1453	N674	Ethernet command source selection IP address 3 range specification
1454	N675	Ethernet command source selection IP address 4 range specification	1459	N746	Clock source selection

Set the action when the inverter is performing operation via communication.

Initial settings and specifications of RS-485 communication (Pr.117 to Pr.124, Pr.331 to Pr.337, Pr.341)

Use the following parameters to perform required settings for the RS-485 communication between the inverter and a personal computer. (Setting Pr.331 to Pr.337, Pr.341, Pr.343, Pr.539, or Pr.549 is not available for the FR-A800-E.)

- There are two types of communication, communication using the inverter's PU connector and communication using the RS-485 terminals
- Parameter setting, monitoring, etc. can be performed using the Mitsubishi inverter protocol or MODBUS RTU communication protocol.
- To establish communication between the computer and inverter, setting of the communication specifications must be made to the inverter in advance.
- Data communication cannot be established if the initial settings are not made or if there is any setting error.

D.,	0					
Pr.	Setting range	Descri				
117 331	0 to 31 (0 to 247) _{*1}	Specify the inverter stati Set the inverter station n more inverters are conne computer.	numbers when two or ected to one personal			
118 332	48, 96, 192, 384, 576, 768, 1152 (3, 6, 12, 24)+2	Set the communication s The setting value × 100 communication speed. For example, if 192 is se speed is 19200 bps.	equals the			
E022	0 (initial value)	Data length 8 bits				
N032	1	Data length 7 bits				
E023	0	Stop bit length 1 bit				
N033	1 (initial value)	Stop bit length 2 bit				
		Stop bit length	Data length			
	0	1 bit	0.1.11			
119 333	1 (initial value)	2 bits	8 bits			
333	10	1 bit				
	11	2 bits	7 bits			
	0	Without parity check	ļ			
120 334	1	With odd parity check				
334	2 (initial value)	With even parity check				
121 335	0 to 10	Set the permissible num unsuccessful data recep consecutive errors excer value, the inverter will tri	tion. If the number of eds the permissible			
	9999	If a communication error will not trip.	,			
400	0	No PU connector commo Communication is availaterminals, but the inverte operation mode. (Pr.336)	ble using the RS-485 er trips in the NET			
122 336	0.1 to 999.8 s	Set the interval of the co (signal loss detection) tin If a no-communication so than the permissible time	ne. tate persists for longer			
	9999 (initial value)	No communication check	(signal loss detection)			
123 337	0 to 150 ms	Set the waiting time betw to the inverter and the re	esponse.			
	9999 (initial value)	Set with communication	data.			
404	0	Without CR/LF				
124 341	1 (initial value)	With CR				
•	2	With CR/LF				
	*1 When commu	inication is made from the I	DC 105 to main all using a			

When communication is made from the RS-485 terminal using *1 the MODBUS RTU protocol, the setting range in parentheses is applied to Pr.331 *2

Values in parentheses are added to the Pr.332 setting range.

 Communication EEPROM write selection (Pr.342) When parameter write is performed via communication, the parameters storage device can be changed from EEPROM + RAM to RAM only. If parameter settings are changed frequently, set "1" in Pr.342.

Operation selection at a communication error (Pr.502, Pr.779)

You can select the inverter's operation when a communication error occurs during communication other than the one through the PU connector. The operation is active under the Network operation mode.

Pr.	Setting range	At fault occurrence	At fault removal
	(initial value) E.SER display *1 ALM signal output		Stays stopped (E.SER display *1)
	1, 11	Deceleration stop E.SER display after stop *1 ALM signal output after stop	Stays stopped (E.SER display *1)
502	2, 12	Deceleration stop E.SER display after stop *1	Automatic restart
	3	Operation continued at the set frequency of Pr.779 Normal indication	Normal operation
	4	Operation continued at the set frequency of Pr.779 "CF" indication	Normal operation
779	0 to 590 Hz	Set the frequency to be run occurrence.	at a communication error
119	9999 (initial value)	The motor runs at the freque communication error.	ency used before the

The "E.EHR" indication appears during Ethernet communication *1 (for the FR-A800-E only). If in communication by the communication option, E.OP1 is displayed.

• MODBUS RTU communication specification (Pr.343, Pr.539, Pr.549)

The MODBUS RTU protocol is valid only in communication from the RS-485 terminals. (The setting is not available for the FR-A800-F)

Pr.	Setting range	Descr	iption	
N033	0	Stop bit length 1 bit	Valid when Pr.N034	
1055	1 (initial value)	Stop bit length 2 bits	(Pr.334) = "0"	
	0	Stop bit length 1 bit		
333	1 (initial value)	Stop bit length 2 bits	Valid when Pr.334 = "0"	
555	10	Stop bit length 1 bit		
	11	Stop bit length 2 bits		
	0	Without parity check The stop bit length is sele 2 bits (according to Pr.33		
334	34 With parity check at odd numbers 1 Stop bit length 1 bit		numbers	
	2 (initial value)	With parity check at even numbers Stop bit length 1 bit		
343	-	Displays the communicati MODBUS RTU communic		
	0	MODBUS RTU communication, but the inverter trips in the NET operation mode.		
539 0.1 to 999.8 s Set the interval of the communic loss detection) time. (the same s Pr.122)				
	9999 (initial value)	No communication check (signal loss detection)		
549	0 (initial value)	Mitsubishi inverter protoco	ol (computer link)	
545	1	MODBUS RTU protocol		

Initial settings and specifications of Ethernet communication (FR-A800-E)

Use the following parameters to perform required settings for Ethernet communication between the inverter and other devices.

1434 1435 1436 0 to 255 Enter the IP address of the inverter to be connected to Ethernet. 1437 1438 1439 0 to 255 Enter the subnet mask of the network to wh inverter belongs. 1440 0 to 255 Enter the subnet mask of the network to wh inverter belongs. 1440 1447 502, 5000 to 5002, 5006 to 5008, 5010 to 5013, 9999, 45237, 61450 Set the application, protocol, etc. 1429 9999, 45237, 61450 Set the communication speed and the communication mode (full-duplex/half-duple/half-du	ich the		
1436 0 to 255 Enter the number of database of the interfection beto connected to Ethernet. 1437 1438 1439 0 to 255 Enter the subnet mask of the network to white inverter belongs. 1440 1441 Enter the subnet mask of the network to white inverter belongs. 1441 502, 5000 to 5002, 5010 to 5013, 9999, 45237, 61450 Set the application, protocol, etc. 1426 0 to 4 Set the communication speed and the communication mode (full-duplex/half-duple When no response is returned for an alive of message (KeepAlive ACK) for the time (s) of Pr.1455 multiplied by 4 elapsed, the conne will be forced to be closed. 1455 1 to 7200 s Signal loss detection disabled. Set the available. 1 A warning (EHR) is output for a signal loss. Set the available. 1431 2 A warning (EHR) and the Alarm (LF) signal are output for a signal loss. Set the available. 3 (E.EHR) is activated for a signal loss. factors. 3 E.EHR) is activated for a signal loss. factors.	ich the		
1436 0 to 255 connected to Ethernet. 1437 1437 1438 enter the subnet mask of the network to white inverter belongs. 1441 502, 5000 to 5002, 5006 to 5008, 5010 to 5013, 9999, 45237, 61450 1426 0 to 4 Set the application, protocol, etc. 1426 0 to 4 Set the communication speed and the communication mode (full-duplex/half-duple/half	ich the		
1438 1439 1440 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1441 1442 502, 5006 to 5008, 5010 to 5013, 9999, 45237, 61450 1426 0 to 4 Set the communication speed and the communication mode (full-duplex/half-duple /half-duple /half-du	ich the		
1439 1440 0 to 255 Enter the subnet mask of the network to white inverter belongs. 1441 1441 Enter the subnet mask of the network to white inverter belongs. 1441 502, 5000 to 5002, 5006 to 5008, 5010 to 5013, 9999, 45237, 61450 Set the application, protocol, etc. 1426 0 to 4 Set the communication speed and the communication mode (full-duplex/half-duple/half-dup	ich the		
1440 0 to 255 Enter the source mask of the network to whene the work to the the work to whene the work to whene the work to whene the work to whene the work to whene the work to the work to whene the work to the work to whene the work to whene the work to the work to whene the work to whene the work to the work to the work to the work to whene the work to whene the work to whene the work to the work to the work to the work to whene the work to whene the work to whene the work to work to work the work th	ich the		
1440 inverter belongs. 1441 inverter belongs. 1441 502, 5000 to 5002, 5006 to 5008, 5010 to 5013, 9999, 45237, 61450 Set the application, protocol, etc. 1429 9999, 45237, 61450 Set the communication speed and the communication mode (full-duplex/half-duple/half-			
1427 502, 5000 to 5002, 5006 to 5008, 5010 to 5013, 9999, 45237, 61450 Set the application, protocol, etc. 1429 9999, 45237, 61450 Set the communication speed and the communication mode (full-duplex/half-duple When no response is returned for an alive or message (KeepAlive ACK) for the time (s) or Pr.1455 multiplied by 4 elapsed, the conne will be forced to be closed. 1455 1 to 7200 s Signal loss detection disabled. Set the available bit he signal loss. 1431 0 (initial value) Signal loss detection disabled. Set the available bit he signal loss. 1431 2 A warning (EHR) is output for a signal loss. Set the available the action wher Ethernet output for a signal loss. 3 A protective function (E.EHR) is activated for a signal loss. Function interrupted by p factors.			
1427 5000 to 5002, 5006 to 5008, 5010 to 5013, 9999, 45237, 61450 Set the application, protocol, etc. 1429 0 to 4 Set the communication speed and the communication mode (full-duplex/half-duplet			
5000 to 5002, 1428 5006 to 5008, 5010 to 5013, 9999, 45237, 61450 Set the application, protocol, etc. 1429 61450 1426 0 to 4 Set the communication speed and the communication mode (full-duplex/half-duple/hal			
1429 61450 1426 0 to 4 Set the communication speed and the communication mode (full-duplex/half-dupl	Set the application, protocol, etc.		
1426 0 to 4 communication mode (full-duplex/half-duplet/hal			
1455 1 to 7200 s message (KeepAlive ACK) for the time (s) a Pr.1455 multiplied by 4 elapsed, the connerwill be forced to be closed. 1455 0 (initial value) Signal loss detection disabled. Set the available the signal loss. 1431 1 A warning (EHR) is output for a signal loss. Set the available the rest output for a signal loss. 2 A warning (EHR) and the Alarm (LF) signal are output for a signal loss. Set the rest output for a signal loss. 3 A protective function (E.EHR) is activated for a signal loss. A rest output for a signal loss. 0 Ethernet communication is available, but the signal loss.			
U (initial value) disabled. Set the availability the signal loss. 1 A warning (EHR) is output for a signal loss. Set the availability the signal loss. 2 A warning (EHR) and the Alarm (LF) signal are output for a signal loss. Set the action where the enter communication interrupted by p factors. 3 (E.EHR) is activated for a signal loss. Set the availability the signal loss. 0 Ethernet communication is available, but the signal loss.	set in		
1431 1 output for a signal loss. detection and s 2 A warning (EHR) and the Alarm (LF) signal are output for a signal loss. the action wher Ethernet communication interrupted by p factors. 3 A protective function (E.EHR) is activated for a signal loss. interrupted by p factors.	lity of		
1431 A warning (EHR) and the Alarm (LF) signal are output for a signal loss. the action wher Ethernet communication interrupted by p factors. 3 A protective function (E.EHR) is activated for a signal loss. 0 Ethernet communication is available, but the source of	elect		
3 (E.EHR) is activated for a signal loss. factors.	is		
	hysical		
inverter trips in the NET operation mode.			
14320.1 to 999.8 s(signal loss detection) time for all devices w addresses in the range specified for Ethern command source selection (Pr.1449 to Pr. If a no-communication state persists for the	Set the interval of the communication check (signal loss detection) time for all devices with IP addresses in the range specified for Ethernet command source selection (Pr.1449 to Pr.1454). If a no-communication state persists for the permissible time or longer, the inverter will trip.		
9999 (initial value) No communication check (signal loss detection	tion)		
1424 1 to 239 Enter the network number.			
1425 1 to 120 Enter the station number.			
1442			
1443 0 to 255			
Set the range of connectable IP addresses network devices.	for the		
1445 network devices. (When Pr.1442 to Pr.1445 = "0 (initial value	e)", the		
1446 function is invalid.)			
1447 0 to 255, 9999			
1448			
1449 Set the range of IP addresses to limit the n devices that can be used as a command so	ource		
1450 during Ethernet communication (with MOD) TCP or CC-Link IE Field Network Basic). When Pr.1449 to Pr.1452 = "0 (initial value)			
1451 IP address is specified for sending comman through the Ethernet network. In this case,			
1452 operation through the Ethernet network (MODBUS/TCP or CC-Link IE Field Network	ĸ		
1453 When four or more clients attempt a connect the inverter during MODBUS/TCP communi	Basic) is not available. When four or more clients attempt a connection to the inverter during MODBUS/TCP communication,		
0 to 255, 9999 the connection attempted from outside of the address range set for Ethernet command selection may be forced to be closed.	cation,		

CC-Link IE Field Network Basic function setting (FR-A800-E)

The CC-Link IE Field Network Basic enables CC-Link IE communication using the general-purpose Ethernet-based technology. The CC-Link IE Field Network Basic is suited to small-scale equipment for which high-speed control is not necessary, and can coexist with the standard Ethernet TCP/IP (HTTP, FTP, etc.). (**Pr.544** can be set only when the FR-A800-E is used or a compatible plug-in option is installed.)

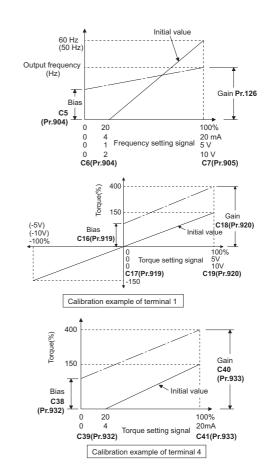
Pr.	Setting range	Description
541	0 (initial value)	Frequency command without sign
541	1	Frequency command with sign
544	0 (initial value), 1, 12, 14, 18, 24, 28, 100, 112, 114, 118, 128	The function of the remote registers can be extended when the CC-Link IE Field Network Basic is used.

• CC-Link IE Field Network function setting (FR-A800-GF)

Use the following parameters to perform required settings for CC-Link IE Field Network communication between the inverter and other stations. (**Pr.349**, **Pr.500**, and **Pr.501** can be set only when the FR-A800-GF inverter is used or when a compatible plug-in option is installed to the FR-A800 inverter.)

Pr.	Setting range	Description
434	0 to 255	Set the inverter network number.
435	0 to 255	Set the inverter station number.
541	0 (initial value)	Frequency command without sign
541	1	Frequency command with sign

CC-Link IE TSN communication function setting

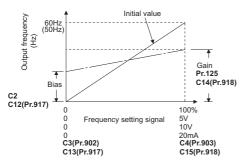

Use the following parameters to perform required settings for CC-Link IE TSN communication between the inverter and other devices.

Data can be transmitted to IT systems while performing real-time cyclic communication control.

Pr.	Setting range	Description			
434					
435	0 to 255	Enter the IP address of the inverter to be			
436	0 10 200	connected to CC-Link IE TSN.			
437					
438					
439	0 to 255	Enter the subnet mask of the network to			
440	0 10 200	which the inverter belongs.			
441					
541	(initial value)	Frequency command without sign			
541	1	Frequency command with sign			
804	0 to 6	In the torque control mode, the torque command source can be selected.			
810	0 to 2	The torque limit input method can be selected.			
1442					
1443	0 to 255				
1444	0 10 200	Set the range of connectable IP addresses			
1445		for the network devices. (When Pr.1442 to Pr.1445 = "0 (initial			
1446		value)", the function is invalid.)			
1447	0 to 255, 9999				
1448					
1459	0 to 2	The internal clocks of connected devices on the network can be synchronized.			

Changing and adjusting (calibrating) the frequency (speed) and torque/magnetic flux using analog input

Pr.	GROUP	Name	Pr.	GROUP	Name
125 (903)	T202 T022	Terminal 2 frequency setting gain frequency	126 (905)	T402 T042	Terminal 4 frequency setting gain frequency
C2 (902)	T200	Terminal 2 frequency setting bias frequency	C3 (902)	T201	Terminal 2 frequency setting bias
C4 (903)	T203	Terminal 2 frequency setting gain	C5 (904)	T400	Terminal 4 frequency setting bias frequency
C6 (904)	T401	Terminal 4 frequency setting bias	C7 (905)	T403	Terminal 4 frequency setting gain
C12 (917)	T100	Terminal 1 bias frequency (speed)	C13 (917)	T101	Terminal 1 bias (speed)
C14 (918)	T102	Terminal 1 gain frequency (speed)	C15 (918)	T103	Terminal 1 gain (speed)
C16 (919)	T110	Terminal 1 bias command (torque/ magnetic flux)	C17 (919)	T111	Terminal 1 bias (torque/magnetic flux)
C18 (920)	T112	Terminal 1 gain command (torque/ magnetic flux)	C19 (920)	T113	Terminal 1 gain (torque/magnetic flux)
C38 (932)	T410	Terminal 4 bias command (torque/ magnetic flux)	C39 (932)	T411	Terminal 4 bias (torque/magnetic flux)
C40 (933)	T412	Terminal 4 gain command (torque/ magnetic flux)	C41 (933)	T413	Terminal 4 gain (torque/magnetic flux)
241	M043	Analog input display unit switchover			


The degree (slope) of the output frequency (speed, torque/magnetic flux) to the frequency/torque setting signal (0 to 5 V DC, 0 to 10 V DC or 4 to 20 mA) is selectable to a desired amount.

- To change the frequency (speed) for the maximum analog input (Pr.125, Pr.126, C14 (Pr.918))
- To change only the frequency setting (gain) for the maximum analog input voltage (current), set **Pr.125 (Pr.126, C14 (Pr.918))**. (Other calibration parameter settings do not need to be changed.) To change the torque/magnetic flux for the maximum analog input
- (C18 (Pr.920), C40 (Pr.933)) To change only the torque/magnetic flux command of the

maximum analog input voltage (current), set to **C18 (Pr.920), C40** (**Pr.933)**. (Other calibration parameter settings do not need to be changed.)

Calibration of analog input bias and gain (C2 (Pr.902) to C7 (Pr.905), C16 (Pr.919) to C19 (Pr.920), C38 (Pr.932) to C41 (Pr.933))

The "bias" and "gain" functions are used to adjust the relationship between the output frequency (torque/magnetic flux) and the setting input signal, such as 0 to 5 V DC/0 to 10 V DC or 4 to 20 mA DC, entered from outside to set the output frequency (torque/ magnetic flux).

Analog input display unit changing (**Pr.241**) The analog input display unit (%/V/mA) for analog input bias and gain calibration can be changed.

9

PID control, Dancer control

Pr.	GROUP	Name	Pr.	GROUP	Name
127	A612	PID control automatic switchover frequency	128	A610	PID action selection
129	A613	PID proportional band	130	A614	PID integral time
131	A601	PID upper limit	132	A602	PID lower limit
133	A611	PID action set point	134	A615	PID differential time
553	A603	PID deviation limit	554	A604	PID signal operation selection
575	A621	Output interruption detection time	576	A622	Output interruption detection level
577	A623	Output interruption cancel level	609	A624	PID set point/ deviation input selection
610	A625	PID measured value input selection	753	A650	Second PID action selection
754	A652	Second PID control automatic switchover frequency	755	A651	Second PID action set point
756	A653	Second PID proportional band	757	A654	Second PID integral time
758	A655	Second PID differential time	C42 (934)	A630	PID display bias coefficient
C43 (934)	A631	PID display bias analog value	C44 (935)	A632	PID display gain coefficient
C45 (935)	A633	PID display gain analog value	1015	A607	Integral stop selection at limited frequency
1140	A664	Second PID set point/ deviation input selection	1141	A665	Second PID measured value input selection
1142	A640	Second PID unit selection	1143	A641	Second PID upper limit
1144	A642	Second PID lower limit	1145	A643	Second PID deviation limit
1146	A644	Second PID signal operation selection	1147	A661	Second output interruption detection time
1148	A662	Second output interruption detection level	1149	A663	Second output interruption cancel level
759	A600	PID unit selection	1134	A605	PID upper limit manipulated value
1135	A606	PID lower limit manipulated value	1136	A670	Second PID display bias coefficient
1137	A671	Second PID display bias analog value	1138	A672	Second PID display gain coefficient
1139	A673	Second PID display gain analog value	44	F020	Second acceleration/ deceleration time
45	F021	Second deceleration time			
			-		

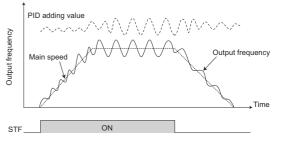
PID control

Process control such as control of the flow rate, air volume or pressure, is possible via the inverter.

When the parameter unit (FR-PU07) is used, the display unit of parameters and monitored items related to PID control can be changed to various units.

A feedback system can be configured and PID control can be performed using the terminal 2 input signal or parameter setting value as the set point, and the terminal 4 input signal as the feedback value.

• Pr.128 = "10, 11" (deviation value signal input) Inverter circuit Manip ulated Moto PID operation ation signal Set point variable Μ Terminal 1 $Kp\left(1+\frac{1}{Ti\times S}+Td\times S\right)$ 0 to ±10VDC (0 to ±5V) To outside eedback signal (n ured value) Kp: Proportionality constant Ti: Integral time S: Operator Td: Differential time


• Pr.128 = "20, 21" (measured value input)

	Inverter circuit
Pr.133 or terminal 2 *2 Set point 0 to 5VDC	$(+, -) \qquad $
(0 to 10V, 4 to 20mA)	Terminal 4 *3
	Feedback signal (measured value) 4 to 20mADC (0 to 5V, 0 to 10V)
	In Depending of the experient The Integral time St. Operator, The Differential time

Kp: Proportionality constant Tr: Integral time S: Operator Td: Differential time When the second PID function is set, two sets of PID functions can be switched for use. The second PID function is enabled by turning ON the RT signal.

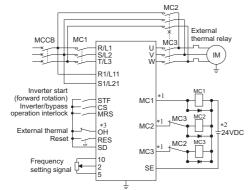
Dancer control

Dancer control is performed by setting "40 to 43" in **Pr.128 PID** action selection. The main speed command is the speed command for each operation mode (External, PU and communication). PID control is performed by the dancer roll position detection signal, and the control result is added to the main speed command. For the main speed acceleration/ deceleration time, set the acceleration time to **Pr.44 Second** acceleration/deceleration time and the deceleration time to **Pr.45 Second deceleration time**.

143

Commercial power supply-inverter switchover function

V/F Magnetic flux Sensorless Vector


Pr.	GROUP	Name	Pr.	GROUP	Name
135	A000	Electronic bypass sequence selection	136	A001	MC switchover interlock time
137	A002	Start waiting time	138	A003	Bypass selection at a fault
139	A004	Automatic switchover frequency from inverter to bypass operation	159	A005	Automatic switchover frequency range from bypass to inverter operation
57	A702	Restart coasting time	58	A703	Restart cushion time

The inverter contains complicated sequence circuits for switching between the commercial power supply operation and inverter operation. Therefore, interlock operation of the magnetic contactor for switching can be easily performed by simply inputting start, stop, and automatic switching selection signals.

The commercial power supply operation is not available with Mitsubishi Electric vector control dedicated motors (SF-V5RU).

Pr.135 setting	Description
0 (initial value)	Without electronic bypass sequence
1	With electronic bypass sequence

Sink logic, Pr.185 = "7", Pr.192 = "17", Pr.193 = "18", Pr.194 = "19"

Electronic bypass sequence connection diagram (standard model)

- Be careful of the capacity of the sequence output terminals. *1
- *2 When connecting a DC power supply, insert a protective diode. *3 The applied terminals differ by the settings of Pr.180 to Pr.189 (input terminal function selection)

Pr 140 to 143 Refer to the page on Pr.29. Pr. 144 Refer to the page on Pr.37.

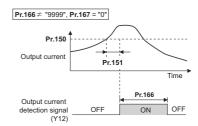
PU display language selection

Pr.	GROUP	Name
145	E103	PU display language selection

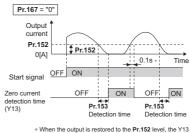
The display language of the parameter unit (FR-PU07) can be selected.

Pr.145 setting	Description	Pr.145 setting	Description
0	Japanese	4	Spanish
1	English	5	Italian
2	German	6	Swedish
3	French	7	Finnish

Refer to the page on Pr.7.


Refer to the page on Pr.22.

Output current detection (Y12 signal) and zero current detection (Y13 signal)


Pr.	GROUP	Name	Pr.	GROUP	Name
150	M460	Output current detection level	151	M461	Output current detection signal delay time
152	M462	Zero current detection level	153	M463	Zero current detection time
166	M433	Output current detection signal retention time	167	M464	Output current detection operation selection

The output current during inverter running can be detected and output to the output terminal.

- Output current detection
- (Y12 signal, Pr.150, Pr.151, Pr.166, Pr.167)
 - The output current detection function can be used for purposes such as overtorque detection.
- If the output during inverter running is the Pr.150 setting or higher for the time set in Pr.151 or longer, the output current detection signal (Y12) is output from the inverter's open collector or relay output terminal.

Zero current detection (Y13 signal, Pr.152, Pr.153, Pr.167) If the output during inverter running is the Pr.152 setting or lower for the time set in Pr.153 or longer, the zero current detection signal (Y13) is output from the inverter's open collector or relay output terminal.

* When the output is restored to signal is turned OFF after 0.1 s

Output current detection operation selection (Pr.167)

Pr.167 setting	Y12 signal-ON	Y13 signal-ON
0 (initial value)	Continuous operation	Continuous operation
1	E.CDO	Continuous operation
10	Continuous operation	E.CDO
11	E.CDO	E.CDO

Pr. 154 Refer to the page on Pr.22.

Selecting operating conditions of the second function signal (RT) and the third function signal (X9)

Pr.	GROUP	Name
155	T730	RT signal function validity condition selection

The second (third) function can be selected by the RT (X9) signal. Operating conditions (validity conditions) for the second (third) function can also be set.

Pr.155 setting	Description	
0 (initial value)	The second (third) function is immediately enabled with ON of the RT (X9) signal.	
10	The second (third) function will be enabled while the RT signal is ON and while running at a constant speed. (Disabled while accelerating or decelerating)	

· Items that can be set as the second function and third function (When the RT (X9) signal is ON, the following second (third) functions are selected at the same time.)

Function	First function Parameter number	Second function Parameter number	Third function Parameter number
Torque boost	Pr.0	Pr.46	Pr.112
Base frequency	Pr.3	Pr.47	Pr.113
Acceleration time	Pr.7	Pr.44	Pr.110
Deceleration time	Pr.8	Pr.44, Pr.45	Pr.110, Pr.111
Electronic thermal O/L relay	Pr.9	Pr.51	*2
Free thermal	Pr.600 to Pr.604	Pr.692 to Pr.696	*2
Stall prevention	Pr.22	Pr.48, Pr.49	Pr.114, Pr.115
Applied motor *1	Pr.71	Pr.450	*2
Motor constant +1	Pr.80 to Pr.84, Pr.89 to Pr.94, Pr.298, Pr.702, Pr.706, Pr.707, Pr.711, Pr.712, Pr.717, Pr.721, Pr.724, Pr.725, Pr.859	Pr.453 to Pr.457, Pr.560, Pr.569, Pr.458 to Pr.462, Pr.738 to Pr.747, Pr.860	*2
Offline auto tuning *1	Pr.96	Pr.463	*2
Online auto tuning *1	Pr.95	Pr.574	*2
PID control	Pr.127 to Pr.134	Pr.753 to Pr.758	*2
PID pre-charge function	Pr.760 to Pr.764	Pr.765 to Pr.769	*2
Brake sequence *1	Pr.278 to Pr.285, Pr.639, Pr.640	Pr.641 to Pr.648, Pr.650, Pr.651	*2
Droop	Pr.286 to Pr.288, Pr.994, Pr.995	Pr.679 to Pr.683	*2
Low-speed range torque characteristic selection *1	Pr.788	Pr.747	*2
Motor control method *1	Pr.800	Pr.451	*2
Speed control gain	Pr.820, Pr.821	Pr.830, Pr.831	*2
Analog input filter	Pr.822, Pr.826	Pr.832, Pr.836	*2
Speed detection filter	Pr.823	Pr.833	*2
Torque control gain	Pr.824, Pr.825	Pr.834, Pr.835	*2
Torque detection filter	Pr.827	Pr.837	*2

*1 The function can be changed by switching the RT signal ON/OFF while the inverter is stopped. If a signal is switched during operation, the operation method changes after the inverter stops.

*2 When the RT signal is OFF, the first function is selected and when it is ON, the second function is selected.

Pr. 156, 157 Pr. 158

Pr. 159

Refer to the page on Pr.22.

- Refer to the page on Pr.52.
- Refer to the page on Pr.135.

User group function

Pr.	GROUP	Name	Pr.	GROUP	Name
160	E440	User group read selection	172	E441	User group registered display/ batch clear
173	E442	User group registration	174	E443	User group clear

This function restricts the parameters that are read by the operation panel and parameter unit.

The initial setting displays all parameters.

Pr.160 setting	Description		
0 (initial value)	Displays all parameters.		
1	Displays parameters registered in the user group.		
9999	Displays only the simple mode parameters.		

User group function (Pr.160, Pr.172 to Pr.174)

The user group function is a function for displaying only the parameters required for a setting.

A maximum of 16 parameters from any of the parameters can be registered in a user group. When **Pr.160** = "1", reading/writing is enabled only for the parameters registered in user groups. (Parameters not registered in user groups can no longer be read.) To register a parameter in a user group, set the parameter number in Pr.173.

To clear a parameter from a user group, set the parameter number in Pr.174. To batch clear all the registered parameters, set Pr.172 = "9999".

Operation panel operation selection

Pr.	GROUP	Name	Pr.	GROUP	Name
161	E200	Frequency setting/ key lock operation selection	295	E201	Frequency change increment amount setting

Setting dial potentiometer mode/key lock operation selection (Pr.161)

The setting dial of the operation panel (FR-DU08) can be used for setting like a potentiometer.

The key operation of the operation panel can be disabled.

Pr.161 setting	Description		
0 Setting dial frequency setting mode		Key lock mode disabled	
1 Setting dial potentiometer mode		usableu	
10 Setting dial frequency setting mode		Key lock mode enabled	
11	Setting dial potentiometer mode	er mode	

Frequency change increment amount setting (Pr.295)

When setting a frequency using the setting dial on the operation panel (FR-DU08), the frequency change increment is determined by how quickly the setting dial is rotated.

Pr. 162 to 165	> Refer to the page on Pr.57.
Pr. 166, 167	Refer to the page on Pr.150.
Pr. 168, 169	Parameter for manufacturer setting. Do not set.
Pr. 170, 171	Refer to the page on Pr.52.
Pr. 172 to 174	Refer to the page on Pr.160.

Input terminal function assignment

Pr.	GROUP	Name	Pr.	GROUP	Name
178	T700	STF terminal function selection	179	T701	STR terminal function selection
180	T702	RL terminal function selection	181	T703	RM terminal function selection
182	T704	RH terminal function selection	183	T705	RT terminal function selection
184	T706	AU terminal function selection	185	T707	JOG terminal function selection
186	T708	CS terminal function selection	187	T709	MRS terminal function selection
188	T710	STOP terminal function selection	189	T711	RES terminal function selection
699	T740	Input terminal filter			

Use the following parameters to select or change the input terminal functions.

(When **Pr.419 Position command source selection** = "2" (simple pulse train position command), terminal JOG is used as a simple position pulse train input terminal, independently of the **Pr.185** setting.)

Setting	Signal name	Fun	ction	
		Pr.59 = 0 (initial value)	Low-speed operation command	
0	RL	Pr.59 ≠ 0 *1	Remote setting (setting clear)	
		Pr.270 = 1, 3, 11, 13 *2	Stop-on-contact selection 0	
1	RM	Pr.59 = 0 (initial value)	Middle-speed operation command	
1	RM	Pr.59 ≠ 0 ∗1	Remote setting (deceleration)	
2	RH	Pr.59 = 0 (initial value)	High-speed operation command	
2	КП	Pr.59 ≠ 0 ∗1	Remote setting (acceleration)	
3	RT	Second function selection		
3	IXI	Pr.270 = 1, 3, 11, 13 *2	Stop-on-contact selection 1	
4	AU	Terminal 4 input selection		
5	JOG	Jog operation selection		
6	cs	Selection of automatic restart after instantaneous power failure, flying start		
		Electronic bypass function		
7	ОН	External thermal relay input *3		
8	REX	15-speed selection (Combination with multi-speeds of RL, RM, and RH)		
9	X9	Third function selection		
10	X10	Inverter run enable signal (FR-HC2/FR-XC/FR-CV/FR- CC2 connection)		
11	X11	FR-HC2/FR-CC2 connection, instantaneous power failure detection		
12	X12	PU operation external interlock		
13	X13	External DC injection brake operation start		
14	X14	PID control valid terminal		
15	BRI	Brake opening completion s	ignal	
16	X16	PU/External operation switch with X16-ON)	nover (External operation	
17	X17	Load pattern selection forwa constant-torque load with X	rd/reverse rotation boost (for I7-ON)	
18	X18	V/F switchover (V/F control with X18-ON)		
19	X19	Load torque high-speed free	uency	
20	X20	S-pattern acceleration/decel	eration C switchover	
22	X22	Orientation command (for vector control compatible option)+4+6		
23	LX	Pre-excitation/servo ON *5		
24	MRS	Output stop		
24	WII NO	Electronic bypass function		
25	STOP	Start self-holding selection		
26	MC	Control mode switchover		

Setting	Signal name	Function			
27	TL	Torque limit selection			
28	X28	Start-time tuning start external input			
32	X32	External fault input			
37	X37	Traverse function selection			
42	X42	Torque bias selection 1			
43	X43	Torque bias selection 2			
44	X44	P/PI control switchover(P control with X44-ON)			
45	BRI2	Second brake sequence open completion			
46	TRG	Trace trigger input			
47	TRC	Trace sampling start/end			
48	X48	Power failure stop external			
50	SQ	Sequence start			
51	X51	Fault clear signal			
52	X52	Cumulative pulse monitor clear (for vector control compatible option)*6			
53	X53	Cumulative pulse monitor clear (control terminal option) (for FR-A8TP) $_{*6}$			
57	JOGF	JOG forward rotation command			
58	JOGR	JOG reverse rotation command			
59	CLRN	NET position pulse clear			
60	STF	Forward rotation command (Assignable to the STF			
61	STR	terminal (Pr.178) only) Reverse rotation command (Assignable to the STR			
		terminal (Pr.179) only)			
62	RES	Inverter reset			
64	X64				
65	X65	PU/NET operation switchover (PU operation with X65-ON)			
66	X66	External/NET operation switchover (NET operation with X66-ON)			
67	X67	Command source switchover (Command by Pr.338 , Pr.339 enabled with X67-ON)			
68	NP	Simple position pulse train sign			
69	CLR	Simple position droop pulse clear			
70	X70	DC feeding operation permission*7			
71	X71	DC feeding cancel _{*7} PID P control switchover			
72	X72				
73	X73	Second PID P control switchover			
74	X74 Magnetic flux decay output shutoff signal X76 Proximity dog				
76					
	77 X77 Pre-charge end command				
	78 X78 Second pre-charge end command				
79	X79	Second PID forward/reverse action switchover			
80	X80	Second PID control valid terminal			
85	X85	SSCNET III(/H) communication disabled (for FR-A8NS)*6			
87	X87	Sudden stop			
88	X88	Upper stroke limit			
89	X89	Lower stroke limit			
92	X92	Emergency stop			
93	X93	Torque control selection			
94	X94	Control signal input for main circuit power supply MC			
95	X95	Converter unit fault input			
96	X96	Converter unit fault (E.OHT, E.CPU) input			
9999		No function (hen Pr.59 Remote function selection \neq "0", functions of the			
	 RL, RM, and RH signals will be changed as in the table. *2 When Pr.270 Stop-on contact/load torque high-speed frequency control selection = "1, 3, 11, or 13", functions of the RL and RT signals will be changed as in the table. *3 The OH signal will operate with the relay contact "open". *4 When the stop position is to be input externally for orientation control, the FR-A8AX (16-bit digital input) is required. *5 Servo ON is enabled during the position control. *6 Available when the option is connected. *7 The setting is available only for standard models and IP55 				
• Adjus		ompatible models. response of input terminal (Pr.699)			
,	9 setting	Description			
	50 ms	Set the time to delay the input terminal response.			
	itial value				
(II		· · · · · · · · · · · · · · · · · · ·			

146 When setting parameters, refer to the Instruction Manual (Detailed) and understand instructions.

Output terminal function assignment

Pr.	GROUP	Name	Pr.	GROUP	Name
190	M400	RUN terminal function selection	191	M401	SU terminal function selection
192	M402	IPF terminal function selection	193	M403	OL terminal function selection
194	M404	FU terminal function selection	195	M405	ABC1 terminal function selection
196	M406	ABC2 terminal function selection	289	M431	Inverter output terminal filter
313	M410	DO0 output selection	314	M411	DO1 output selection
315	M412	DO2 output selection			

Use the following parameters to change the functions of the open collector output terminals and relay output terminals. Pr.313 to Pr.315 can be set only when the FR-A800-GF is used or a compatible plug-in option is installed.

Setting					
Positive	Negative	Signal name	Function		
logic	logic	name			
0	100	RUN	Inverter running		
1	101	SU	Up to frequency ^{*1}		
2	102	IPF	Instantaneous power failure/undervoltage*5		
3	103	OL	Overload warning		
4	104	FU	Output frequency detection		
5	105	FU2	Second output frequency detection		
6	106	FU3	Third output frequency detection		
7	107	RBP	Regenerative brake pre-alarm _{*4}		
8	108	THP	Electronic thermal O/L relay pre-alarm		
10	110	PU	PU operation mode		
11	111	RY	Inverter operation ready		
12	112	Y12	Output current detection		
13	113	Y13	Zero current detection		
14	114	FDN	PID lower limit		
15	115	FUP	PID upper limit		
16	116	RL	PID forward/reverse rotation output		
17		MC1	Electronic bypass MC1		
18	-	MC2	Electronic bypass MC2		
19		MC3	Electronic bypass MC3		
20	120	BOF	Brake opening request		
22	122	BOF2	Second brake opening request		
25	125	FAN	Fan fault output		
26	126	FIN	Heat sink overheat pre-alarm		
27	127	ORA	Orientation complete (for vector control compatible option)*3		
28	128	ORM	Orientation fault (for vector control compatible option)*3		
30	130	Y30	Forward rotation output (for vector control compatible option)*3		
31	131	Y31	Reverse rotation output (for vector control compatible option)*3		
32	132	Y32	Regenerative status output (for vector control compatible option)*3		
33	133	RY2	Operation ready 2		
34	134	LS	Low speed detection		
35	135	TU	Torque detection		
36	136	Y36	In-position		
38	138	MEND	Travel completed		
39	139	Y39	Start time tuning completion		
40	140	Y40	Trace status		
41	141	FB	Speed detection		
42	142	FB2	Second speed detection		
43	143	FB3	Third speed detection		
44	144	RUN2	Inverter running 2		
45	145	RUN3	Inverter running and start command is ON		
46	146	Y46	During deceleration at occurrence of power failure *5		
47	147	PID	During PID control activated		
48	148	Y48	PID deviation limit		
49	149	Y49	During pre-charge operation		
50	150	Y50	During second pre-charge operation		
51	151	Y51	Pre-charge time over		
52	152	Y52	Second pre-charge time over		
53	153	Y53	Pre-charge level over		

Positive logic	ting Negative logic	Signal name	Function		
54	154	Y54	Second pre-charge level over		
55	155	Y55	Motor temperature detection (for FR-A8AZ)*3*7		
56	156	ZA	Home position return failure		
57	157	IPM	During PM sensorless vector control _{*7}		
60	160	FP	Position detection level		
61	161	PBSY	During position command operation		
63	163	ZPEND	Home position return completed		
64	164	Y64	During retry*7		
67	167	Y67	Power failure signal		
68	168	EV	24 V external power supply operation		
70	170	SLEEP Y79	PID output interruption		
79 80	179 180	Y79 SAFE	Pulse train output of output power		
			Safety monitor output _{*7}		
84 85	184 185	RDY Y85	Position control preparation ready		
85	185	192	DC current feeding+5		
86	186	Y86	Control circuit capacitor life (For Pr.313 to Pr.322) _{*6} Main circuit capacitor life		
87	187	Y87	(For Pr.313 to Pr.322)*5*6*7 Cooling fan life		
88	188	Y88	(For Pr.313 to Pr.322) _{*6}		
89 90	189 190	Y89 Y90	(For Pr.313 to Pr.322)*5*6*7		
91	190	Y91	Fault output 3 (power-OFF signal)		
92	192	Y92	Energy saving average value updated timing		
93	193	Y93	Current average monitor signal		
94	194	ALM2	Fault output 2		
95	195	Y95	Maintenance timer signal		
96	196	REM	Remote output		
97	197	ER	Alarm output 2		
98 198		LF	Alarm		
99 199		ALM	Fault		
200 300		FDN2	Second PID lower limit		
201 301		FUP2	Second PID upper limit		
202 302		RL2	Second PID forward/reverse rotation outp		
203	303	PID2	Second During PID control activated		
204	304	SLEEP2	During second PID output shutoff		
205	305	Y205	Second PID deviation limit		
206 306		Y206	Cooling fan operation command signal		
207	307	Y207	Control circuit temperature signal		
208	308	PS	PU stopped signal		
211	311	LUP	Upper limit warning detection*7		
212	312	LDN	Lower limit warning detection*7		
213	313	Y213	During load characteristics measurement _{*7}		
227	327	Y227	Parallel operation ready _{*8}		
242	342	LNK			
			Inverter-to-inverter linkun*9		
			Inverter-to-inverter linkup*9 No function		
	*1 Be sign bec det cau rep *2 Wh OF *3 Avz *4 The *5 The cor *6 The or v A8 opt *7 The *8 The	hal or the se hause this ci- cause this ci- sause the outp eatedly beth on the acce en the pow. F at the sam illable where en the pow. F at the sam illable where e setting is a setting car when an opl NCE) is inst ion, refer to e function is sesting is a	No function In changing the frequency setting with an analog atting dial of the operation panel (FR-DU08) hange speed and the timing of the change speed the acceleration/deceleration time setting may ut of the SU (up to frequency) signal to switch ween ON and OFF. (This repeating does not occu- leration/deceleration time setting is "0 s".) er is reset, the fault output 2 signal (ALM2) turns ne time as the power turns OFF. the option is connected. available only for standard models. available only for standard models and IP55 dels. In be used for Pr.313 to Pr.322 for the FR-A800-G ion (FR-A8AY, FR-A8AR, FR-A8NC, or FR- alled. For the corresponding parameters of each the Instruction Manual of the option. not available only in the FR-A842-P.		
• Adjust	*1 Be sign bec det caa rep whv *2 Wh OF *3 Avz *4 The *5 The cor *6 The cor *6 The cor *8 The *9 The	hal or the se cause this ci- cause this ci- ermined by use the outp eatedly between the acce en the power at the sar aliable where a setting is a setting cause of the sar anpatible mo a setting cause when an oph NCE) is inst ion, refer to a setting is a a setting is a a setting is a	No function In changing the frequency setting with an analog etting dial of the operation panel (FR-DU08) hange speed and the timing of the change speed the acceleration/deceleration time setting may ut of the SU (up to frequency) signal to switch ween ON and OFF. (This repeating does not occu- leration/deceleration time setting is "0 s".) er is reset, the fault output 2 signal (ALM2) turns ne time as the power turns OFF. the option is connected. available only for standard models. available only for standard models and IP55 dels. he used for Pr.313 to Pr.322 for the FR-A800-G icion (FR-A8AY, FR-A8AR, FR-A8NC, or FR- alled. For the corresponding parameters of each the Instruction Manual of the option. not available in the FR-A842-P.		
• Adjust Pr. 289 s	*1 Be sign bec det cal rep wha *2 Wh OF *3 AV *4 The *5 The or *6 The or *6 The or *8 The *8	hal or the se cause this ci- cause this ci- ermined by use the outp eatedly between the acce en the power at the sar aliable where a setting is a setting cause of the sar anpatible mo a setting cause when an oph NCE) is inst ion, refer to a setting is a a setting is a a setting is a	No function In changing the frequency setting with an analog titing dial of the operation panel (FR-DU08) hange speed and the timing of the change speed the acceleration/deceleration time setting may ut of the SU (up to frequency) signal to switch ween ON and OFF. (This repeating does not occu- leration/deceleration time setting is "0 s".) er is reset, the fault output 2 signal (ALM2) turns ne time as the power turns OFF. the option is connected. available only for standard models. available only for standard models. available only for standard models. available only for Pr.313 to Pr.322 for the FR-A800-G tion (FR-A8AY, FR-A8AR, FR-A8NC, or FR- alled. For the corresponding parameters of each the Instruction Manual of the option. not available only in the FR-A842-P. available only in the FR-A800-E.		
,	*1 Be sign bec det cau rep *2 Wh oF *3 Av *4 The *5 The cor *6 The cor *6 The or *8 The *7 The *8 The *8 The *8 The *8 The *8 The set opt	hal or the se ause this ci- ermined by see the outp eatedly between the acce en the power F at the sar hilable where e setting is a e setting is a setting is a e setting is a	No function In changing the frequency setting with an analog atting dial of the operation panel (FR-DU08) hange speed and the timing of the change speed the acceleration/deceleration time setting may ut of the SU (up to frequency) signal to switch ween ON and OFF. (This repeating does not occu- leration/deceleration time setting is "0 s".) er is reset, the fault output 2 signal (ALM2) turns ne time as the power turns OFF. the option is connected. available only for standard models. available only for standard models. available only for standard models. available only for standard models. to be used for Pr.313 to Pr.322 for the FR-A800-G tion (FR-A8AY, FR-A8AR, FR-A8NC, or FR- alled. For the corresponding parameters of each the Instruction Manual of the option. not available only in the FR-A842-P. available only in the FR-A842-P. available only in the FR-A800-E. ninal response level (Pr.289)		

Pr. 232 to 239 Refer to the page on Pr.4.
Pr. 240 Refer to the page on Pr.72.
Pr. 241 Refer to the page on Pr.125.
Pr. 242, 243 Refer to the page on Pr.73.

Cooling fan operation selection

Pr.	GROUP	Name
244	H100	Cooling fan operation selection

A cooling fan is built into the inverter and its operation can be controlled.

Pr.244 setting	Description		
0	A cooling fan operates at power ON. Cooling fan ON/OFF control is invalid. (The cooling fan is always ON at power ON)		
1 (initial value)	Cooling fan ON/OFF control is valid. The fan is always ON while the inverter is running. During a stop, the inverter status is monitored and the fan switches ON/OFF according to the temperature.		
101 to 105	Cooling fan ON/OFF control is valid. Set the cooling fan stop waiting time within 1 to 5 s. The waiting time is the Pr.244 setting minus 100.		

Slip compensation

Pr.	GROUP	Name	Pr.	GROUP	Name
245	G203	Rated slip	246	G204	Slip compensation time constant
247	G205	Constant-power range slip compensation selection			

Motor slip is estimated from the inverter output current and the rotation of the motor is maintained as a constant.

Self power management					
Pr.	GROUP	Name	Pr.	GROUP	Name
248	A006	Self power management selection	254	A007	Main circuit power OFF waiting time
137	A002	Start waiting time	30	E300	Regenerative function selection

By turning ON the magnetic contactor (MC) on the input side before the motor is started and turning OFF the MC after the motor is stopped, supplying power to the main circuit is stopped, reducing the standby power.

Pr.	Setting range	Description
	0 (initial value)	Self power management function disabled
248	1	Self power management function enabled (main circuit OFF at protective function activation)
	2	Self power management function enabled (main circuit OFF at protective function activation due to a circuit failure)
137	0 to 100 s	Set a time period that is a little longer than the time period from the ON signal input to the actual pick-up operation of MC1 (0.3 to 0.5 s).
	1 to 3600 s	Set the waiting time until the main circuit power supply is turned OFF after the motor is stopped.
254	9999	The main circuit power supply is turned OFF only when the protective function selected by Pr.248 is activated.

Pr.	Setting range	Description
30	100, 101	Power supply to the inverter: AC (terminals R, S, and T) When power is supplied only to the control circuit, and then switched to be supplied to both the control and main circuits, inverter reset is not performed.
	0 to 2, 10, 11, 20, 21, 102, 110, 111, 120, 121	For other settings, refer to page 123 .

Earth (ground) fault detection at start

Magnetic flux

Pr.	GROUP	Name
249	H101	Earth (ground) fault detection at start

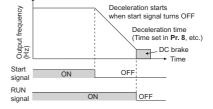
Select whether to enable/disable earth (ground) fault detection at start. When enabled, earth (ground) fault detection is performed immediately after a start signal is input to the inverter.

Pr.249 setting	Description	
0 (initial value)	Without the earth (ground) fault detection at start	
1	With the earth (ground) fault detection at start	

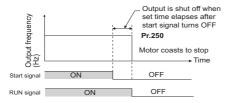
 If a ground fault is detected at start while Pr.249 = "1", the output side earth (ground) fault overcurrent (E.GF) is displayed and the outputs are shut off.

Motor stop method/start signal selection

Pr.	GROUP	Name
250	G106	Stop selection


Select the stopping method (deceleration stop or coasting) at turn-OFF of the start signal.

Use this function to stop a motor with a mechanical brake at turn-OFF of the start signal.


The start signal (STF/STR) operation can also be selected.

Pr.250	Description			
Setting	Start signal (STF/STR)	Stop operation		
0 to 100 s	STF signal: Forward rotation start STR signal: Reverse rotation start	It will coast to stop after set time when the start signal is turned OFF.		
1000 s to 1100 s	STF signal: Start signal STR signal: Forward/ reverse rotation signal	It will coast to stop after (Pr.250 - 1000) s when the start signal is turned OFF.		
9999	STF signal: Forward rotation start STR signal: Reverse rotation start	It will perform deceleration stop when the start signal is		
8888	STF signal: Start signal STR signal: Forward/ reverse rotation signal	turned OFF.		

When Pr.250 is "9999 (initial value) or 8888"

9

I/O phase loss protection selection

Pr.	GROUP	Name	Pr.	GROUP	Name
251	H200	Output phase loss protection selection	872	H201	Input phase loss protection selection

The output phase loss protective function, which stops the inverter output if one of the three phases (U, V, W) on the inverter's output side (load side) is lost, can be disabled.

The input phase loss protective function on the inverter's input side (R, S, T) can be enabled.

Pr.	Setting range	Description
251	0	Without output phase loss protection
251	1 (initial value)	With output phase loss protection
872	0 (initial value)	Without input phase loss protection
072	1	With input phase loss protection

Pr. 252, 253

Refer to the page on Pr.73.

Displaying the life of the inverter parts

Pr.	GROUP	Name	Pr.	GROUP	Name
255	E700	Life alarm status display	256	E701	Inrush current limit circuit life display
257	E702	Control circuit capacitor life display	258	E703	Main circuit capacitor life display
259	E704	Main circuit capacitor life measuring	506	E705	Display estimated main circuit capacitor residual life

The degree of deterioration of the main circuit capacitor, control circuit capacitor, inrush current limit circuit, cooling fan, and internal fan alarm*2 can be diagnosed on the monitor.

When a part approaches the end of its life, an alarm can be output by self diagnosis to prevent a fault.

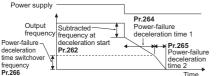
(Note that the life diagnosis of this function should be used as a guideline only, because with the exception of the main circuit capacitor, the life values are theoretical calculations.)

Pr.	Setting range	Description
255	(0 to 15, 32 to 47) *1	Displays whether or not the parts of the control circuit capacitor, main circuit capacitor, cooling fan, Internal fan alarm•2, and inrush current limit circuit have reached the life alarm output level. Read-only.
256 *3	(0 to 100%)	Displays the deterioration degree of the inrush current limit circuit. Read-only.
257 *3	(0 to 100%)	Displays the deterioration degree of the control circuit capacitor. Read-only.
258 *3	(0 to 100%)	Displays the deterioration degree of the main circuit capacitor. Read-only. The value measured by Pr.259 is displayed.
259 *3	0, 1 (2, 3, 8, 9)	Setting "1" and turning the power supply OFF starts the measurement of the main circuit capacitor life. If the setting value of Pr.259 becomes "3" after turning the power supply ON again, it means that the measurement is completed. The deterioration degree is read to Pr.258 .
506 *3	(0 to 100%)	Displays the estimated residual life of the main circuit capacitor. Read-only.

*1 The setting range (reading only) for separated converter types is "0, 1, 4, or 5". The setting range (reading only) for IP55 compatible models is "0 to 63".

*2 The internal fan is only available for the IP55 compatible model. *3 The setting is available only for standard models and IP55 compatible models.

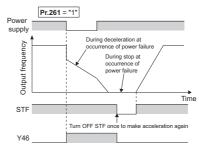
Pr. 260


Refer to the page on Pr.72.

Power failure time deceleration stop function

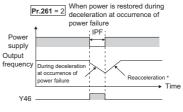
Pr.	GROUP	Name	Pr.	GROUP	Name
261	A730	Power failure stop selection	262	A731	Subtracted frequency at deceleration start
263	A732	Subtraction starting frequency	264	A733	Power-failure deceleration time 1
265	A734	Power-failure deceleration time 2	266	A735	Power failure deceleration time switchover frequency
294	A785	UV avoidance voltage gain	606	T722	Power failure stop external signal input selection
668	T786	Power failure stop frequency gain			

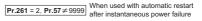
At instantaneous power failure or undervoltage, the motor can be decelerated to a stop or decelerated once and re-accelerated to the set frequency.

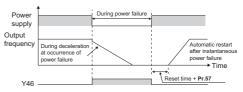

Pr.	Setting range	Description
	0 (initial value)	Power failure time deceleration stop function disabled
261	1, 2, 11, 12, 21, 22	Power failure time deceleration stop function enabled Select action at an undervoltage or when a power failure occurs.
262	0 to 20Hz	Normally, the motor runs at the initial value as it is. However, adjust to suit the size of the load specification (moment of inertia, torque).
263	0 to 590 Hz	When output frequency \geq Pr.263 Deceleration from (output frequency - Pr.262) When output frequency < Pr.263 Deceleration from output frequency
	9999	Deceleration from (output frequency - Pr.262)
264	0 to 3600 s	Set the slope applicable from the deceleration start to the Pr.266 set frequency.
265	0 to 3600 s	Set the slope applicable for the frequency range starting at Pr.266 and downward.
	9999 (initial value)	Same as Pr.264 .
266	0 to 590 Hz	Set the frequency at which the slope during deceleration switches from the Pr.264 setting to the Pr.265 setting.
294	0 to 200%	Adjust the response level at UV avoidance operation. Setting a large value improves the response to changes in the bus voltage. If the inertia is high, the amount of regeneration is too large. Set a smaller value.
606	0	Normally open input (NO contact input specification)
000	1 (initial value)	Normally closed input (NC contact input specification)
668	0 to 200%	Adjust the response level for the operation where the deceleration time is automatically adjusted.
	Power supply	

 Set Pr.261 to select the action at an undervoltage and power failure.

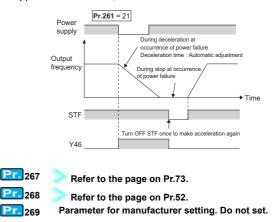
Pr.261 setting	Action at undervoltage and power failure	Power restoration during deceleration at occurrence of power failure	Deceleration stop time	Undervoltage avoidance function
0	Coasts to stop	Coasts to stop	-	-
1		Deceleration stop		Not used
2		Re-acceleration	According to Pr.262 to	Not used
11		Deceleration stop	Pr.266 setting	With
12	Deceleration	Re-acceleration		With
21	stop	Deceleration stop	Automatic	Not used
22		Re-acceleration	adjustment of deceleration time	Not used


• Power failure stop function (**Pr.261** = "1, 11, 21") Even if power is restored during deceleration triggered by a power failure, deceleration stop is continued after which the inverter stays stopped. To restart operation, turn the start signal OFF then ON again.


Continuous operation function at instantaneous power failure
 (**Pr.261** = "2, 12, 22")


The motor re-accelerates to the set frequency if the power restores during deceleration at occurrence of power failure. Combining with the automatic restart after instantaneous power failure function enables a power failure time deceleration stop and re-acceleration at a power restoration.

If the power is restored after stoppage by a power failure, a restart operation is performed when automatic restart after instantaneous power failure (**Pr.57** \neq "9999") is selected.



Automatic adjustment of deceleration time (**Pr.261** = "21, 22" **Pr.294**, **Pr.668**)

•

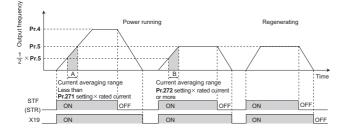
When "21, 22" is set in **Pr.261**, the deceleration time is automatically adjusted to keep (DC bus) voltage constant in the converter when the motor decelerates to a stop at a power failure. Setting of **Pr.262** to **Pr.266** is not required.

Use **Pr.668 Power failure stop frequency gain** to adjust the response level during deceleration time auto adjustment. Increasing the setting improves the response level to the bus voltage fluctuations, but the output frequency may be unstable. If setting **Pr.294 UV avoidance voltage gain** lower also does not suppress the vibration, set **Pr.668** lower.

Explanations of Parameters

9

Load torque high-speed frequency control


Pr.	GROUP	Name	Pr.	GROUP	Name
270	A200	Stop-on contact/load torque high-speed frequency control selection	271	A201	High-speed setting maximum current
272	A202	Middle-speed setting minimum current	273	A203	Current averaging range
274	A204	Current averaging filter time constant	4	D301	Multi-speed setting (high speed)
5	D302	Multi-speed setting (middle speed)			

This function is designed to increase speed automatically under light load, for example to minimize the incoming/outgoing time in a multistory parking lot.

The load size during power driving is estimated by detecting average currents at set timings after a start. When the load is light, the frequency is increased from the originally-set frequency. (During regeneration load operation, the frequency is not increased.)

Pr.270 setting	Description			
0 (initial value)	Normal operation			
1	Stop-on-contact control			
2	Load torque high-speed frequency control			
3	Stop-on-contact + load torque high-speed frequency control			
11	Stop-on-contact control E.OLT detection			
13	Stop-on-contact + load torque high-speed frequency control	under stop-on contact control		

- Set such items as the current and averaging range for load torque high-speed frequency control selected by setting Pr.270 = "2 or 3"
- When the load torque high-speed frequency selection (X19) signal is ON, the inverter automatically adjusts the maximum frequency in the range between the Pr.4 Multi-speed setting (high speed) and Pr.5 Multi-speed setting (middle speed) setting in accordance with the average current while the motor is accelerating from a frequency that is half of the Pr.5 setting to the Pr.5 setting as shown in the figure below.

Pr.	Setting range	Description			
4	0 to 590 Hz	Set the higher-speed frequency.			
5	0 to 590 Hz	Set the lower-speed frequency.			
271	0 to 400%	Set the upper and lower limits of the current at			
272	0 to 400%	high and middle speeds.			
273	0 to 590 Hz	Set the average current during acceleration from (Pr.273 \times 1/2) Hz to (Pr.273) Hz.			
215	9999 (Initialization)	Set the average current during acceleration from (Pr.5 \times 1/2) Hz to (Pr.5) Hz.			
274	1 to 4000	Set the time constant of the primary delay filter relative to the output current. (The time constant [ms] is $0.5 \times Pr.274$, and the initial value is 8 ms.) A larger setting results in a stable operation with poorer response.			

Stop-on-contact control Magnetic flux Sensorless

Pr.	GROUP	Name	Pr.	GROUP	Name
270	A200	Stop-on contact/load torque high-speed frequency control selection	275	A205	Stop-on contact excitation current low-speed multiplying factor
276	A206	PWM carrier frequency at stop-on contact	22	H500	Stall prevention operation level
6	D303	Multi-speed setting (low speed)	48	H600	Second stall prevention operation level

To ensure accurate positioning at the upper limit, etc. of a lift, stopon-contact control causes the mechanical brake to close while the motor creates a holding torque to keep the load in contact with a mechanical stopper. etc.

This function suppresses vibration that is likely to occur when the load is stopped upon contact in lift applications, thereby ensuring reliable and highly accurate positioning stop.

Pr.270 setting	Description		
0 (initial value)	Normal operation		
1	Stop-on-contact control		
2	Load torque high-speed frequency control		
3	Stop-on-contact + load torque high-speed frequency control		
11	Stop-on-contact control E.OLT invalid		
13	Stop-on-contact + load torque high-speed frequency control	under stop-on- contact control	

Select either Real sensorless vector control (speed control) or Advanced magnetic flux vector control. When both the RT and RL

signals are switched ON, the inverter enters the stop-oncontact control, and operation is performed at the frequency set in Pr.6 Multi-speed setting (low speed) independently of the preceding speed.

Setting

range

0 to 590 Hz

0 to 400%

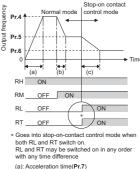
0 to 400%

0 to 300%

(initial value)

9999

No compensation


Pr.

6

22

48

275

(b): Deceleration time(Pr.8) (c): Second deceleration tir

(Pr 44/Pr 45)

(c): Second deceleration time(Pr.44/Pr.45)					
Description					
Set the output frequency for stop-on-contact control. Set the frequency as low as possible (about 2 Hz). If a frequency higher than 30 Hz is set, it operates with 30 Hz. When performing stop-on-contact control during encoder feedback control, encoder feedback control is invalid due to a transition to the stop-on-contact control mode.					
Set the stall prevention operation level for stop-on- contact control used under Advanced magnetic flux vector control. The smaller value set in either Pr.22 or Pr.48 has priority. The torque limit level uses the Pr.22 setting for Real sensorless vector control.					
Normally set this parameter within the range of 130% to 180%. Set the force (holding torque) for stop-on-contact control.					

Pr.	Setting range	Description			
0 to 9*1 Set a PWM carrie		Set a PWM carrier frequency for stop-on-contact			
276 *3	0 to 4*2	control. For Real sensorless vector control, the carrier frequency is always 2 kHz when the setting value is 0 to 5 and always 6 kHz when the setting value is 6 to 9. (Valid at the output frequency of 3 Hz or less.)			
	9999 (initial value)	As set in Pr.72 PWM frequency selection .			

The setting range of FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower *1

*2 The setting range of FR-A820-03800(75K) or higher and FR-

A840-02160(75K) or higher Not available for the FR-A842-P.

*3

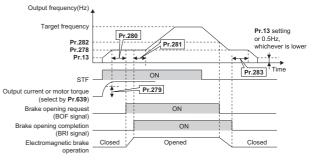
Brake sequence function

Pr.	GROUP	Name	Pr.	GROUP	Name
278	A100	Brake opening frequency	279	A101	Brake opening current
280	A102	Brake opening current detection time	281	A103	Brake operation time at start
282	A104	Brake operation frequency	283	A105	Brake operation time at stop
284	A106	Deceleration detection function selection	285	A107	Overspeed detection frequency
292	A110	Automatic acceleration/	620	A108	Brake opening
292	F500	deceleration	639		current selection
640	A109	Brake operation frequency selection	641	A130	Second brake sequence operation selection
642	A120	Second brake opening frequency	643	A121	Second brake opening current
644	A122	Second brake opening current detection time	645	A123	Second brake operation time at start
646	A124	Second brake operation frequency	647	A125	Second brake operation time at stop
648	A128	Second deceleration detection function selection	650	A128	Second brake opening current selection
651	A129	Second brake operation frequency selection			

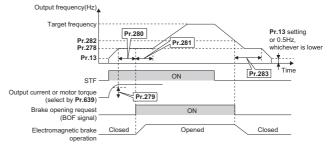
This function outputs operation timing signals of the mechanical brake from the inverter, such as for lift applications.

This function is useful in preventing load slippage at a start due to poor mechanical brake timing and overcurrent alarm in stop status and enable secure operation.

- <Operation example>
- At start


When the start signal is input to the inverter, the inverter starts running, and when the output frequency reaches the frequency set in Pr.278 and the output current or the motor torque is equal to or greater than the Pr.279 setting, the brake opening request signal (BOF) is output after the time set in Pr.280. The brake opening completion signal (BRI) is input, and the output frequency is increased to the set speed after the set time in Pr.281

Deceleration time


When the inverter decelerates to the frequency set in Pr.282, the inverter turns OFF the BOF signal and decelerates further to the frequency set in Pr.278. After electromagnetic brake operation completes and the inverter recognizes the turn OFF of the BRI signal, the inverter holds the frequency set in Pr.283 for the time set in Pr.283. And after the time set in Pr.283 passes, the inverter decelerates again. *1 The inverter outputs is shut off when the frequency reaches Pr.13 Starting frequency setting or 0.5 Hz, whichever is lower.

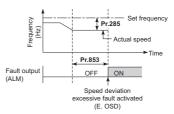
When **Pr.292** = "8" (without mechanical brake opening *1 completion signal input), the time starts when the brake opening completion signal is output.

When Pr.292 = "7" (with brake opening completion signal input)

Turning ON the RT signal enables the second brake sequence function.

Pr.	Setting range	Description		
278	0 to 30Hz	Set the rated slip frequency of the motor + approx. 1.0 Hz. This can be set only when $Pr.278 \leq Pr.282$.		
279	0 to 400%	If the setting is too low, dropping of the load is more likely to occur at a start, and generally, it is set between 50 and 90%. The inverter rated current is regarded as 100%.		
280	0 to 2 s	Generally set between 0.1 and 0.3 s.		
281	0 to 5 s	 Pr.292 = 7: Set the mechanical delay time until braking eases. Pr.292 = 8: Set the mechanical delay time until braking eases + approx. 0.1 to 0.2 s. 		
282	0 to 30Hz	Frequency that turns OFF the brake opening request signal (BOF) and operates the electromagnetic brake. Generally, set the setting value of Pr.278 + 3 to 4 Hz. This can be set only when Pr.282 \geq Pr.278 .		
283	0 to 5 s	Pr.292 = 7: Set the mechanical delay time until the brake closes + 0.1 s. Pr.292 = 8: Set the mechanical delay time until the brake closes + approx. 0.2 to 0.3 s.		
	0 (initial value)	The deceleration detection function disabled.		
284	1	The protective function activates when the deceleration speed of the deceleration operation is not normal.		
285 *2	0 to 30Hz	The brake sequence fault (E.MB1) activates when the difference between the detection frequency and output frequency is equal to or greater than the setting value under encoder feedback control.		
	9999 (initial value)	Overspeed detection disabled.		
292	0, 1, 3, 5 to 8, 11	Setting this parameter to "7, 8" enables the brake sequence function.		
639	0 (initial value)	Brake opening by output current		
	1	Brake opening by motor torque		
640	0 (initial value)	Brake closing operation by frequency command		
	1	Brake closing operation by the actual motor rotation speed (estimated value)		
	0 (initial value)	Normal operation when the RT signal is ON		
641	7	Second brake sequence 1 when the RT signal is ON		
	8	Second brake sequence 2 when the RT signal is ON		
	9999	First brake sequence 1 is valid when the RT signal is ON		

*2 The speed deviation excess detection frequency is used when vector control is performed.


Avoiding motor overrunning Vector

Pr.	GROUP	Name	Pr.	GROUP	Name
285	H416	Speed deviation excess detection frequency	853	H417	Speed deviation time
873	H415	Speed limit			

• Speed deviation excess detection (Pr.285, Pr.853)

When the difference (absolute value) between the speed command value and actual rotation speed in speed control under vector control is equal to or higher than the setting value in **Pr.285 Speed**

deviation excess detection frequency for a continuous time equal to or longer than the setting value in **Pr.853 Speed deviation time**, Speed deviation excess detection (E.OSD) activates to shut off the inverter output.

• Speed limit (Pr.873)

This function prevents overrunning even when the setting value for the number of encoder pulses and the value of the actual number of pulses are different. When the setting value for the number of encoder pulses is lower than the actual number of pulses, because the motor may increase speed, the output frequency is limited with the frequency of (set frequency + **Pr.873**).

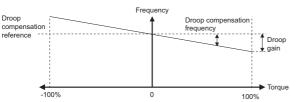
Droop control

Magnetic flux Sensorless Vector PM

Pr.	GROUP	News	Pr.	GROUP	News
	GROUP	Name		GROUP	Name
286	G400	Droop gain	287	G401	Droop filter time constant
288	G402	Droop function activation selection	679	G420	Second droop gain
680	G421	Second droop filter time constant	681	G422	Second droop function activation selection
682	G423	Second droop break point gain	683	G424	Second droop break point torque
994	G403	Droop break point gain	995	G404	Droop break point torque

This is a function to give droop characteristics to the speed by balancing the load in proportion with the load torque. This is effective when balancing the load when using multiple inverters.

Pr.	Setting range	Description		
286	0 (initial value)	Droop control disabled		
200	0.1 to 100%	Set the droop amount at the rated torque as % value of the rated motor frequency.		
287	0 to 1 s	Set the filter time constant to apply to the current for torque.		


Pr.	Setting range	Description				
	0 (initial value)	Without droop control during acceleration/ deceleration (With 0 limit)				
	1*1	Constantly droop control during operation (With 0 limit)	The Pr.84 setting is the droop compensation reference.			
	2*1	Constantly droop control during operation (Without 0 limit)				
288	10*1	Without droop control during acceleration/ deceleration (With 0 limit)	Motor speed is the droop			
	11*1	Constantly droop control during operation (With 0 limit)	compensation reference.			
	20*1	Without droop control during acceleration/ deceleration (With 0 limit)				
	21*1	Constantly droop control during operation (With 0 limit)	The Pr.1121 setting is the droop compensation reference.			
	22*1	Constantly droop control during operation (Without 0 limit)				
994	0.1 to 100% Set the droop amount to be chat the rated motor frequency.					
554	9999 (initial value)	No function				
995	0.1 to 100%	Set the torque when the droop amount is to be changed.				

*1 Under Advanced magnetic flux vector control, the operation is the same with setting the parameter to "0".

Droop control

Droop control is enabled for Advanced magnetic flux vector control, Real sensorless vector control, vector control, and PM sensorless vector control when Pr.286 is not "0".

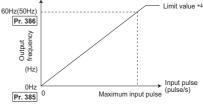
The upper limit of the droop compensation frequency is 120 Hz. Turning ON the RT signal enables the second droop control.

Break point setting for droop control (Pr.994, Pr.995) Set Pr.994 and Pr.995 to have a break point on a droop compensation frequency line. Setting a break point allows the inverter to raise the droop compensation frequency for light-load (no load) operation without raising it for heavy-load operation.

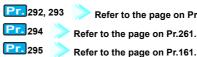
Pulse train input/output

Pr.	GROUP	Name	Pr.	GROUP	Name
291	D100	Pulse train I/O selection	384	D101	Input pulse division scaling factor
385	D110	Frequency for zero input pulse	386	D111	Frequency for maximum input pulse

A pulse train input to terminal JOG can be used to set the inverter's speed command.


The pulse train can be output from terminal FM by the open collector output system.

Speed synchronized operation of an inverter can be performed by using the pulse train input/output together with terminal JOG.


Pr.291 setting	Input (Terminal JOG)	Output (Terminal FM)	
0 (initial value)	JOG signal *2	FM output *3	
1	Pulse train input	FM output *3	
10 *3	JOG signal *2	Pulse train output (50% duty)	
11 *3	Pulse train input	Puise train output (50% duty)	
20 *3	JOG signal *2	Pulse train output (ON width	
21 *3		fixed)	
100 *3	Pulse train input	Pulse train output (ON width fixed) *1	

*1 Regardless of the Pr.54 setting, the signal input as a pulse train is output as it is

- *2 The function is assigned in Pr.185 JOG terminal function selection
- Only the FM type inverters support the pulse train output. *3
- · Changing the frequency at pulse train input (Pr.385, Pr.386)

- Limit value = (Pr.386 Pr.385) 1.1 + Pr.385 *4
- How to calculate the input pulse division scaling factor (Pr.384) Maximum number of pulses (pulse/s) = Pr.384 × 400 (Allowable maximum number of pulses = 100k pulses/s)
- If Pr.419 Position command source selection = "2" (simple pulse train position command) is set, terminal JOG is used for the simple position pulse train input regardless of the Pr.291 Pulse train I/O selection setting.

Refer to the page on Pr.61.

Refer to the page on Pr.261.

Password function

Pr.	GROUP	Name	Pr.	GROUP	Name
296	E410	Password lock level	297	E411	Password lock/ unlock

Registering a 4-digit password can restrict parameter reading/ writing.

· Level of reading/writing restriction by PU/NET mode operation command can be selected by Pr.296.

	B II modo	operation	NET m	node ope	ration co	mmand
Pr.296 setting	PU mode operation command		RS-485 terminals		Communication option	
	Read	Write	Read	Write	Read	Write
9999 (initial value)	0	0	0	0	0	0
0, 100	×	×	×	×	×	×
1, 101	0	×	0	×	0	×
2, 102	0	×	0	0	0	0
3, 103	0	0	0	×	0	×
4, 104	×	×	×	×	0	×
5, 105	×	×	0	0	0	0
6, 106	0	0	×	×	0	×
99, 199	Only the parameters registered in the user group can be read/written. (For the parameters not registered in the user group, the same restriction level as "4, 104" applies.)					

O: Enabled, x: Disabled

Pr. 297 setting	Description
1000 to 9998	Register a 4-digit password.*1
(0 to 5)*2	Displays password unlock error count. (Reading only) (Valid when Pr.296 = "100 to 106")
9999 (initial value)	No password lock
*1	If the password is forgotten, it can be unlocked with all parameter

If the password is forgotten, it can be unlocked with all parameter clear, but doing so will also clear the other parameters. When **Pr.297** = "0, 9999", writing is always enabled, but setting is

*2 disabled. (The display cannot be changed.)

Pr. 298 **Pr.** 299

Refer to the page on Pr.81.

Refer to the page on Pr.57.

Pr. 331 to 337 Refer to the page on Pr.117.

Start command source and frequency command source during communication operation

Pr.	GROUP	Name	Pr.	GROUP	Name
338	D010	Communication operation command source	339	D011	Communication speed command source
550	D012	NET mode operation command source selection	551	D013	PU mode operation command source selection

The operation and speed commands from an external device can be enabled during Network operation. The operation command source in the PU operation mode can also be selected.

Pr.	Setting range	Description
338	0 (initial value)	Start command source is communication.
	1	Start command source is external.
	0 (initial value)	Frequency command source is communication.
	1	Frequency command source is external.
339	2	Frequency command source is external. (When there is no external input, the frequency command via communication is valid, and the frequency command from terminal 2 is invalid.)
	0	The communication option is the command source when in the NET operation mode.
	1 *1	The RS-485 terminals are the command source when in the NET operation mode.
550	5*2	The Ethernet connector is the command source when in the NET operation mode.
	9999 (initial value)	Communication option is recognized automatically. Normally, the RS-485 terminals*3 are the command source. When the communication option is mounted, the communication option is the command source.
	1*1	The RS-485 terminals are the command source when in the PU operation mode.
	2	The PU connector is the command source when in the PU operation mode.
551	3	The USB connector is the command source when in the PU operation mode.
	5*2	The Ethernet connector is the command source when in the PU operation mode.
	9999 (initial value)	USB automatic recognition. Normally, the PU connector is the command source. When the USB is connected, the USB connector is the command source.

The setting is not used for the FR-A800-E. *1

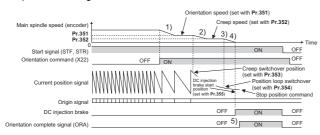
*2 The setting is available for the FR-A800-E only. Ethernet connector for the FR-A800-E *3

Pr. 340

Refer to the page on Pr.79.

Pr. 341 to 343 > Refer to the page on Pr.117.

Orientation control


Magnetic flux Vector

Pr.	GROUP	Name	Pr.	GROUP	Name
350	A510	Stop position command selection	351	A526	Orientation speed
352	A527	Creep speed	353	A528	Creep switchover position
354	A529	Position loop switchover position	355	A530	DC injection brake start position
356	A531	Internal stop position command	357	A532	Orientation in- position zone
358	A533	Servo torque selection	359	C141	Encoder rotation direction
360	A511	16-bit data selection	361	A512	Position shift
362	A520	Orientation position loop gain	363	A521	Completion signal output delay time
364	A522	Encoder stop check time	365	A523	Orientation limit
366	A524	Recheck time	369	C140	Number of encoder pulses
393	A525	Orientation selection	394	A540	Number of machine side gear teeth
395	A541	Number of motor side gear teeth	396	A542	Orientation speed gain (P term)
397	A543	Orientation speed integral time	398	A544	Orientation speed gain (D term)
399	A545	Orientation deceleration ratio	829	A546	Number of machine end encoder pulses
851	C240	Control terminal option-Number of encoder pulses	852	C241	Control terminal option-Encoder rotation direction
862	C242	Encoder option selection			

The inverter can adjust the stop position (Orientation control) using an encoder attached to a place such as the main shaft of the machine.

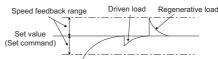
An orientation control compatible option is required.

- Internal stop position command
- When "0" is set in **Pr.350 Stop position command selection**, the internal position command mode is activated.
- In the internal position command mode, the setting value of **Pr.356 Internal stop position command** is used as the stop position.
- Internal stop position command
- When **Pr.350 Stop position command selection** is set to "1" and the FR-A8AX is used, 16-bit data (binary input) is used to give the stop position.
- Operation timing chart

- Using the FR-A8TP (motor end) together with the plug-in option FR-A8AP/FR-A8AL/FR-A8APR (machine end) enables machine end orientation control.
- Setting Pr.862 = "1" enables machine end orientation.

When only the FR-A8AL is used, machine end orientation control is enabled by setting the number of machine end encoder pulses in **Pr.829**.

Encoder feedback control

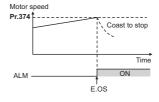

Magnetic flux

Pr.	GROUP	Name	Pr.	GROUP	Name
359	C141	Encoder rotation direction	367	G240	Speed feedback range
368	G241	Feedback gain	369	C140	Number of encoder pulses
144	M002	Speed setting switchover	285	A107	Overspeed detection frequency
851	C240	Control terminal option-Number of encoder pulses	852	C241	Control terminal option-Encoder rotation direction

By detecting the rotation speed of the motor with the encoder and feeding it back to the inverter, output frequency of the inverter is controlled to keep the speed of the motor constant even for the load change.

A vector control compatible option is required.

- Using Pr.359 Encoder rotation direction and Pr.369 Number of encoder pulses, set the rotation direction and the number of pulses for the encoder.
- When a value other than "9999" is set in **Pr.367 Speed feedback range**, encoder feedback control is valid. Using the set point (frequency at which stable speed operation is performed) as reference, set the higher and lower setting range. Normally, set the frequency converted from the slip amount (r/ min) of the rated motor speed (rated load). If the setting is too large, response becomes slow.


 Set Pr.368 Feedback gain when the rotation is unstable or response is slow.

Pr.368 setting	Description
Pr.368 > 1	Response will become faster but it may cause overcurrent or become unstable.
1 > Pr.368	Response will become slower but it will become more stable.

Motor overspeeding detection

Pr.	GROUP	Name
374	H800	Overspeed detection level

If the motor rotation speed exceeds the speed set in **Pr.374** during encoder feedback control, Real sensorless vector control, vector control or PM sensorless vector control, Overspeed occurrence (E.OS) occurs, the inverter output is shut off.

9

Signal loss detection of encoder signals

Pr.	GROUP	Name	Pr.	GROUP	Name
376	C148	Encoder signal loss detection enable/ disable selection	855	0040	Control terminal option-Signal loss detection enable/ disable selection

If encoder signals are disconnected during encoder feedback control, orientation control or vector control, Signal loss detection (E.ECT) is turned ON to shut off the inverter output.

Pr. 380 to 383	> Refer to the page on Pr.29.
Pr. 384 to 386	Refer to the page on Pr.291.
Pr. 393 to 399	Refer to the page on Pr.350.

PLC function

Pr.	GROUP	Name	Pr.	GROUP	Name
414	A800	PLC function operation selection	415	A801	Inverter operation lock mode setting
416	A802	Pre-scale function selection	417	A803	Pre-scale setting value
498	A804	PLC function flash memory clear	675	A805	User parameter auto storage function selection
1150 to 1199	A810 to A859	User parameters 1 to User parameters 50			

The inverter can be run in accordance with a sequence program. In accordance with the machine specifications, a user can set various operation patterns: inverter movements at signal inputs, signal outputs at particular inverter statuses, and monitor outputs, etc.

Pr.	Setting range		Description			
	0 (initial value)	PLC function disa	bled			
414	1, 11	PLC function enabled	The SQ signal is enabled by input from a command source (external input terminal / communication).			
	2, 12	enabled	The SQ signal is enabled by ir from an external input termina			
415	0 (initial value)		command is enabled regardles of the sequence program.	s of the		
415	1		The inverter start command is enabled only while the sequence program is running.			
416	0 to 5	Unit scale factor 0: No function 1: x 1 2: x 0.1 3: x 0.01 4: x 0.001 5: x 0.0001	When the pulse train is input f terminal JOG, the number of si pulses can be converted. The result of conversion is sto SD1236. "Number of sampled pulses" =	ampled red to		
417	0 to 3267	Pre-scale setting value	pulse value per count cycle" x "pre- scale setting value (Pr.417)" x "unit scale factor (Pr.416)"			
			n memory fault display (no iting while the flash memory is on).			
			flash memory (no operation during flash memory fault).	Write		
498	0 to 9999	Other than 0 and range				
		0: Normal display				
		1: The flash memory has not been cleared because the PLC function is enabled.				
		9696: During flasl or flash memory f	During flash memory clearing operation			
	1	Auto storage fund	tion enabled			
675	9999 (initial value)	Auto storage func	tion disabled			

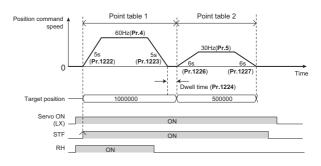
Pr.	Setting range	Description
1150 to 1199	0 to 65535	Desired values can be set. Because devices D206 to D255 used by the PLC function can be mutually accessed, the values set to Pr.1150 to Pr.1199 can be used by the sequence program. The result of performing calculation by a sequence program can also be monitored by Pr.1150 to Pr.1199 .

- Switch the execution key (RUN/STOP) of the sequence program by turning the SQ signal ON/OFF. The sequence program can be executed by turning the SQ signal ON. To input the SQ signal, set "50" in any of **Pr.178** to **Pr.189** (input terminal function selection) to assign the function to a terminal.
- To write to the sequence program, use FR Configurator2 on a personal computer that is connected to the inverter via RS-485 communication.
- This function copies the PLC function project data to a USB memory device.

The PLC function project data copied in the USB memory device can be copied to other inverters. This function is useful in backing up the parameter setting and for allowing multiple inverters to operate by the same sequence programs.

Simple positioning function by parameters Vector

	_			_	
Pr.	GROUP	Name	Pr.	GROUP	Name
419	B000	Position command source selection	464	B020	Digital position control sudden stop deceleration time
465	B021	First target position lower 4 digits	466	B022	First target position upper 4 digits
467	B023	Second target position lower 4 digits	468	B024	Second target position upper 4 digits
469	B025	Third target position lower 4 digits	470	B026	Third target position upper 4 digits
471	B027	Fourth target position lower 4 digits	472	B028	Fourth target position upper 4 digits
473	B029	Fifth target position lower 4 digits	474	B030	Fifth target position upper 4 digits
475	B031	Sixth target position lower 4 digits	476	B032	Sixth target position upper 4 digits
477	B033	Seventh target position lower 4 digits	478	B034	Seventh target position upper 4 digits
479	B035	Eighth target position lower 4 digits	480	B036	Eighth target position upper 4 digits
481	B037	Ninth target position lower 4 digits	482	B038	Ninth target position upper 4 digits
483	B039	Tenth target position lower 4 digits	484	B040	Tenth target position upper 4 digits
485	B041	Eleventh target position lower 4 digits	486	B042	Eleventh target position upper 4 digits
487	B043	Twelfth target position lower 4 digits	488	B044	Twelfth target position upper 4 digits
489	B045	Thirteenth target position lower 4 digits	490	B046	Thirteenth target position upper 4 digits
491	B047	Fourteenth target position lower 4 digits	492	B048	Fourteenth target position upper 4 digits
493	B049	Fifteenth target position lower 4 digits	494	B050	Fifteenth target position upper 4 digits
1221	B101	Start command edge detection selection	1222	B120	First positioning acceleration time
1223	B121	First positioning deceleration time	1224	B122	First positioning dwell time
1225	B123	First positioning sub- function	1226	B124	Second positioning acceleration time
1227	B125	Second positioning deceleration time	1228	B126	Second positioning dwell time
1229	B127	Second positioning sub- function	1230	B128	Third positioning acceleration time
1231	B129	Third positioning deceleration time	1232	B130	Third positioning dwell time
1233	B131	Third positioning sub- function	1234	B132	Fourth positioning acceleration time
1235	B133	Fourth positioning deceleration time	1236	B134	Fourth positioning dwell time
1237	B135	Fourth positioning sub- function	1238	B136	Fifth positioning acceleration time
1239	B137	Fifth positioning deceleration time	1240	B138	Fifth positioning dwell time
1241	B139	Fifth positioning sub- function	1242	B140	Sixth positioning acceleration time
1243	B141	Sixth positioning deceleration time	1244	B142	Sixth positioning dwell time
1245	B143	Sixth positioning sub- function	1246	B144	Seventh positioning acceleration time
1247	B145	Seventh positioning deceleration time	1248	B146	Seventh positioning dwell time
1249	B147	Seventh positioning sub- function	1250	B148	Eighth positioning acceleration time
1251	B149	Eighth positioning deceleration time	1252	B150	Eighth positioning dwell time
1253	B151	Eighth positioning sub- function	1254	B152	Ninth positioning acceleration time
1255	B153	Ninth positioning deceleration time	1256	B154	Ninth positioning dwell time
1257	B155	Ninth positioning sub- function	1258	B156	Tenth positioning acceleration time
1259	B157	Tenth positioning deceleration time	1260	B158	Tenth positioning dwell time
1261	B159	Tenth positioning sub- function	1262	B160	Eleventh positioning acceleration time


Pr.	GROUP	Name	Pr.	GROUP	Name
1263	B161	Eleventh positioning deceleration time	1264	B162	Eleventh positioning dwell time
1265	B163	Eleventh positioning sub- function	1266	B164	Twelfth positioning acceleration time
1267	B165	Twelfth positioning deceleration time	1268	B166	Twelfth positioning dwell time
1269	B167	Twelfth positioning sub- function	1270	B168	Thirteenth positioning acceleration time
1271	B169	Thirteenth positioning deceleration time	1272	B170	Thirteenth positioning dwell time
1273	B171	Thirteenth positioning sub-function	1274	B172	Fourteenth positioning acceleration time
1275	B173	Fourteenth positioning deceleration time	1276	B174	Fourteenth positioning dwell time
1277	B175	Fourteenth positioning sub-function	1278	B176	Fifteenth positioning acceleration time
1279	B177	Fifteenth positioning deceleration time	1280	B178	Fifteenth positioning dwell time
1281	B179	Fifteenth positioning sub- function	1282	B180	Home position return method selection
1283	B181	Home position return speed	1284	B182	Home position return creep speed
1285	B183	Home position shift amount lower 4 digits	1286	B184	Home position shift amount upper 4 digits
1287	B185	Travel distance after proximity dog ON lower 4 digits	1288	B186	Travel distance after proximity dog ON upper 4 digits
1289	B187	Home position return stopper torque	1290	B188	Home position return stopper waiting time
1292	B190	Position control terminal input selection	1293	B191	Roll feeding mode selection

Set positioning parameters such as the number of pulses (position) and acceleration/deceleration time in advance to create a point table (point table method). Positioning operation is performed by selecting the point table.

· Positioning operation by point tables, example 1 (automatic

continuous positioning operation) The figure below shows an operation example when the following settings are made for point tables.

Point table		get ition	Maximum speed	Acceleration time	Deceleration time	Dwell time	Auxiliary function
table	Upper	Lower	(Hz)	(s)	(s)	(ms)	Tunction
1	100	0	60	5	5	1000	1 (absolute position, continuous)
2	50	0	30	6	6	0	10 (increment al position, individual)

[•] Selecting the home position return method (Pr.1282 to Pr.1288)

Pr.1282 Setting	Home position return method	Description
0	Dog type *1 Vector	Deceleration starts when the proximity dog signal is turned ON. For the home position after turn OFF of the proximity dog signal, the position specified by the first Z-phase signal or the position of the first Z-phase signal shifted by the home position shift amount (Pr.1285 , Pr.1286) is used.
1	Count type +1	Deceleration starts when the proximity dog signal is turned ON. After the proximity dog, the motor travels the specified travel distance (Pr.1287 , Pr.1288). Then, it uses the position specified by the first Z-phase signal or position of the Z-phase signal shifted by the home position shift amount (Pr.1285 , Pr.1286).
2	Data set type Vector	The position at which the start signal is input is used as the home position.
3	Stopper type Vector	A workpiece is pressed to a mechanical stopper, and the position where it is stopped is set as the home position. Pressing is confirmed when the estimated speed value has fallen blow Pr.865 Low speed detection for 0.5 s during activation of the torque limit operation. (While the stopper-type home position is performed, Pr.1289 Home position return stopper torque is applied.) After Pr.1290 Home position return stopper waiting time has passed after pressing is confirmed, the home position is shifted by the home position shift amount (Pr.1285 and Pr.1286). After a position command is created and the absolute value of the droop pulse (after electronic gear) falls below the in-position width, the home position return is completed.
4 (initial value)	Ignoring the home position (Servo ON position as the home position) Vector	The serve ON position is used as the home position.
5	Dog type back end reference Vector	Deceleration starts at the front end of the proximity dog. After the back end is passed, the position is shifted by the post-dog travel distance and home position shift amount. The position after the shifts is set as the home position. Set pulses required for deceleration from the creep speed or more as the total of the postdog travel distance and home position shift amount.
6	Count type front end reference Vector	Deceleration starts at the front end of the proximity dog, and the position is shifted by the postdog travel distance and home position shift distance. The position after the shifts is set as the home position. Set pulses required for changing the speed from the home position speed to the creep speed or more as the total of the post-dog travel distance and home position shift amount.

*1 If it is set under PM sensorless vector control, Home position return parameter setting error (HP3) occurs.

Position control by pulse train input


Vector PM

Pr.	GROUP	Name	Pr.	GROUP	Name
419	B000	Position command source selection	428	B009	Command pulse selection
429	B010	Clear signal selection	430	B011	Pulse monitor selection
635	M610	Cumulative pulse clear signal selection	636	M611	Cumulative pulse division scaling factor
637	M612	Control terminal option-Cumulative pulse division scaling factor	638	M613	Cumulative pulse storage

		The home	Selecting c the current monitor	position 2	
Pr.419 Setting	g command selection selection when the LX signal OFF (servo-OFF)		When home position return is completed	When position control is switched to other control mode	Absolute position control
0 (initial value)	Simple position control by point tables (position command by setting parameters).		Not cleared		
1	Position command by the pulse train input to the FR-A8AL *2	Not retained		Cleared	Disabled
2	Simple pulse train position command by the pulse train input to the inverter		-*3		
10		Retained	Not cleared		
100		Not retained	Cleared		
110	Oimente	Retained	Ciculou		
200	Simple position	Not retained	Not cleared		
210	control by	Retained		Not cleared	
300	point tables (position	Not retained	Cleared	cieareu	
310 1110	command by			Cleared	Enabled
1110	setting parameters).	Retained		Cicaleu	(with the
1310		Retained	Cleared	Not cleared	FR- A8APS installed) *4

*1 Timing to clear the current position 2 monitor value differs depending on the setting value.
*2 During position control under Vector control, if **Pr.419** = "1" while

- *2 During position control under Vector control, if Pr.419 = "1" while the FR-A8AL is not installed (or is disabled), the protective function (E.OPT) is activated.
- *3 The home position return is not available.
- 4 During position control under Vector control, if **Pr.419** = "1110 or 1310" while the FR-A8APS is not installed (or is disabled), a protective function (E.OPT) is activated.
- Select the command pulse train with Pr.428.
- If the Pre-excitation/servo ON (LX) signal is turned ON, output shutoff is canceled and the Position control preparation ready (RDY) signal is turned ON after 0.1 s. Turning ON STF (forward rotation stroke end signal) or STR (reverse rotation stroke end signal) rotates the motor according to the command pulse. If the forward (reverse) rotation stroke end signal is turned OFF, the motor does not rotate in the corresponding direction.

Electronic gear setting under position control Vector PM

Pr.	GROUP	Name	Pr.	GROUP	Name
420	B001	Command pulse scaling factor numerator (electronic gear numerator)	421	B002	Command pulse multiplication denominator (electronic gear denominator)
424	B005	Position command acceleration/ deceleration time constant			

Set the gear ratio between the machine gear and motor gear.

Pr.	Setting range	Description		
420		Set the electronic gear.		
421	0 to 32767	Pr.420 is the numerator and Pr.421 is the denominator.		
424	0 to 50 s	Use it when the rotation is not smooth because the electronic gear ratio is large (10 times or larger) and the rotation speed is slow.		

Position control gain adjustment Vector PM

Pr.	GROUP	Name	Pr.	GROUP	Name
422	B003	Position control gain	423	B004	Position feed forward gain
425	B006	Position feed forward command filter	446	B012	Model position control gain
1298	B013	Second position control gain			

- Adjust Pr.422 when any of such phenomena as unusual vibration, noise and overcurrent of the motor/machine occurs. Increasing the setting improves traceability for the position command and also improves servo rigidity at a stop, but oppositely makes an overshoot and vibration more liable to occur.
- The function of Pr.423 is to cancel a delay caused by the droop pulses in the deviation counter.
- The first delay filter for the feed forward command can be input in Pr.425.
- Use Pr.446 to set the gain for the model position controller.
- Turning ON the RT signal enables the second position loop gain.

Position adjustment parameter

Vector PM

Pr.	GROUP	Name	Pr.	GROUP	Name
426	B007	In-position width	427	B008	Excessive level error
1294	B192	Position detection lower 4 digits	1295	B193	Position detection upper 4 digits
1296	B194	Position detection selection	1297	B195	Position detection hysteresis width

If the number of droop pulses is equal to or smaller than the Pr.426 setting value, the In-position (Y36) signal turns ON.

- If the number of droop pulses exceeds the Pr.427 setting, a position error is detected, Excessive position fault (E.OD) is activated and the inverter output is shut off.
- If the current position (before the electronic gear) exceeds the detected position (Pr.1294 + Pr.1295), the Position detected signal (FP) turns ON.
- Use Pr.1296 Position detection selection to determine whether to detect a position in the positive position range or in the negative position range.

Pr. 428, 429	Refer to the page on Pr.419.
Pr. 446 📏	Refer to the page on Pr.422.
Pr. 450 📏	Refer to the page on Pr.71.
Pr. 451 📏	Refer to the page on Pr.80.
Pr. 453, 454	Refer to the page on Pr.80.
Pr. 455 to 463	Refer to the page on Pr.82.


Remote output function

Pr.	GROUP	Name	Pr.	GROUP	Name
495	M500	Remote output selection	496	M501	Remote output data 1
497	M502	Remote output data 2			

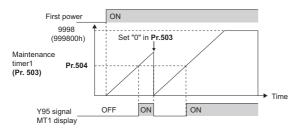
The inverter output signals can be turned ON/OFF instead of the remote output terminals of a programmable controller.

Pr.	Setting range	Descripti	on		
	0 (initial value)	Remote output data is cleared when the power supply is turned OFF.	Remote output data		
495	1	Remote output data is retained when the power supply is turned OFF.	is cleared during an inverter reset.		
455	10	Remote output data is cleared when the power supply is turned OFF.	Remote output data is retained during		
	11	Remote output data is retained when the power supply is turned OFF.	an inverter reset.		
496	0 to 4095	Refer to the diagram below. (Even if Pr.77 Parameter write selection is set to "0 (initial value)", the setting value can be changed regardless whether the inverter is running or not or of the operation mode.)			
497	0 to 4095				

<Remote output data>

Any value *1

Y0 to Y6 are available when the extension output option (FR-*2 A8AY) is installed.


*3 RA1 to RA3 are available hen the relay output option (FR-A8AR) is installed.

Maintenance timer warning

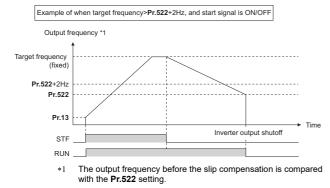
Pr.	GROUP	Name	Pr.	GROUP	Name
503	E710	Maintenance timer 1	504	E711	Maintenance timer 1 warning output set time
686	E712	Maintenance timer 2	687	E713	Maintenance timer 2 warning output set time
688	E714	Maintenance timer 3	689	E715	Maintenance timer 3 warning output set time

The maintenance timer output signal (Y95) is output when the inverter's cumulative energization time reaches the time period set with the parameter. MT1, MT2 or MT3 is displayed on the operation panel (FR-DU08).

This can be used as a guideline for the maintenance time of peripheral devices.

Operation example of the maintenance timer 1 (Pr.503, Pr.504) (with both MT2 and MT3 OFF)

 The cumulative energization time of the inverter is stored in the EEPROM every hour and displayed in Pr.503 (Pr.686, Pr.688) in 100 h increments. Pr.503 (Pr.686, Pr.688) is clamped at 9998 (999800 h).

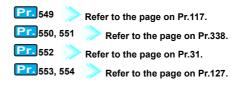

Output stop function

Pr.	GROUP	Name
522	G105	Output stop frequency

The motor coasts to a stop (inverter output shutoff) when inverter output frequency falls to **Pr. 522** setting or lower.

Pr.522 setting	Description			
0 to 590 Hz	Set the frequency to start coasting to a stop (output shutoff).			
9999 (initial value)	No function			

 When both of the frequency setting signal and output frequency falls to the frequency set in **Pr.522** or lower, the inverter stops the output and the motor coasts to a stop.

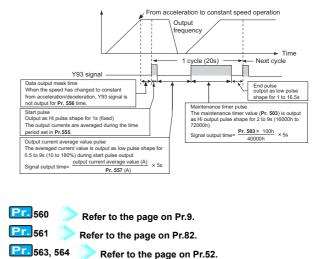

 At a stop condition, the motor starts running when the frequency setting signal exceeds Pr.522 +2Hz. The motor is accelerated at the Pr.13 Starting frequency (0.01Hz under IPM motor control) at the start.

USB device communication

Pr.	GROUP	Name	Pr.	GROUP	Name
547	N040	USB communication station number	548	N041	USB communication check time interval

Setup of the inverter can be easily performed with FR Configurator2 through the USB communication.

Pr.	Setting range	Description
547	0 to 31	Inverter station number specification
	0	USB communication is possible, however the inverter will trip (E.USB) when the mode changes to the PU operation mode.
548	0.1 to 999.8	Set the communication check time interval. If a no-communication state persists for longer than the permissible time, the inverter will trip (E.USB).
	9999 (initial value)	No communication check


Current average value monitor signal

Pr.	GROUP	Name	Pr.	GROUP	Name
555	E720	Current average time	556	E721	Data output mask time
557	E722	Current average value monitor signal output reference current			

The output current average value during constant-speed operation and the maintenance timer value are output to the current average value monitor signal (Y93) as a pulse.

The output pulse width can be used in a device such as the I/O module of a programmable controller as a guideline for the maintenance time for mechanical wear, belt stretching, or deterioration of devices with age.

The pulse is repeatedly output during constant-speed operation in cycles of 20 s to the Current average monitor signal (Y93).

Pr. 569 Refer to the page on Pr.80.

Multiple rating setting

Pr.	GROUP	Name
570	E301	Multiple rating setting

Four rating types of different rated current and permissible load can be selected. The optimal inverter rating can be chosen in accordance with the application, enabling equipment size to be reduced.

Pr.570 setting	Description
0 *1	SLD rating 110% 60 s, 120% 3 s (inverse-time characteristics) Surrounding air temperature of 40°C
1	LD rating 120% 60 s, 150% 3 s (inverse-time characteristics) Surrounding air temperature of 50°C
2 (initial value)	ND rating 150% 60 s, 200% 3 s (inverse-time characteristics) Surrounding air temperature of 50°C
3 *1	HD rating 200% 60 s, 250% 3 s (inverse-time characteristics) Surrounding air temperature of 50°C

*1 Not compatible with the IP55 compatible model.

Refer to the page on Pr.13.

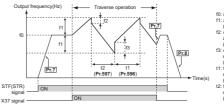
Checking of current input on analog input terminal

Pr.	GROUP	Name	Pr.	GROUP	Name
573	A680 T052	4 mA input check selection	777	A681 T053	4 mA input check operation frequency
778	A682 T054	4 mA input check filter			

When current is input to the analog input terminal 2 and terminal 4, operation when the current input has gone below the specified level (loss of analog current input) can be selected. It is possible to continue the operation even when the analog current input is lost.

Pr.	Setting range	Description		
	1	Continues the operation with output frequency before the current input loss.		
	2	When the current input loss is detected, 4 mA input fault (E.LCI) is activated.		
547	3	Decelerates to stop when the current input loss is detected. After it is stopped, 4 mA input fault (E.LCI) is activated.		
	4	Continues operation with the Pr.777 setting.		
	9999 (initial value)	No current input check		
548	0 to 590 Hz	Set the running frequency for current input loss. (Valid when Pr.573 = "4")		
5	9999 (initial value)	No current input check when Pr.573 = "4"		
778	0 to 10 s	Set the current input loss detection time.		

Pr. 574 Refer to the page on Pr.95.


Pr. 575 to 577 📄 Refer to the page on Pr.127.

Traverse function

Pr.	GROUP	Name	Pr.	GROUP	Name
592	A300	Traverse function selection	593	A301	Maximum amplitude amount
594	A302	Amplitude compensation amount during deceleration	595	A303	Amplitude compensation amount during acceleration
596	A304	Amplitude acceleration time	597	A305	Amplitude deceleration time

The traverse operation, which oscillates the frequency at a constant cycle, is available.

Pr.	Setting range	Description
	0	Traverse function invalid
592 1 Traverse function valid mode		Traverse function valid only in External operation mode
	2	Traverse function valid regardless of the operation mode
593	0 to 25%	Level of amplitude during traverse operation
594	0 to 50%	Compensation amount during amplitude inversion (from acceleration to deceleration)
595	0 to 50%	Compensation amount during amplitude inversion (from deceleration to acceleration)
596	0.1 to 3600 s	Time period of acceleration during traverse operation
597	0.1 to 3600 s	Time period of deceleration during traverse operation

in: set frequency (1: amplitude amount from the set frequency (f0 × Pr.593/100)

compensation amount at transition from

acceleration to deceleration (f1 × Pr.594/100)

- compensation amount at transition fr
- (f1 × Pr.595/100) (f1 × Pr.595/100)
- operation (Time from (f0 f1) to (f0 + f1)) (Pr.596)
- time from deceleration during traverse operation (Time from (f0 + f1) to (f0 - f1)) (Pr.597)

Varying the activation level of the undervoltage protective function

Pr.	GROUP	Name
598	H102	Undervoltage level

If the undervoltage protection (E.UVT) is activated due to unstable voltage in the power supply, the undervoltage level (DC bus voltage value) can be changed.

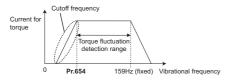
Pr. 598 setting	Description	
175 to 215 VDC *1	Set the DC voltage value at which E.UVT occurs.	
350 to 430 VDC *2	Set the DC voltage value at which E.0V Foccurs.	
9999 (initial value)	E.UVT occurs at 215 VDC (200 V class) / 430 VDC (400 V class).	
*2 For 1 Pr. 599 Re Pr. 600 to 604 Pr. 609, 610	the 200 V class fer to the page on Pr.30. Refer to the page on Pr.9. Refer to the page on Pr.127. fer to the page on Pr.57. i0, 651 Refer to the page on Pr.278.	

Pr. 571

Parallel operation communication check time (FR-A842-P)

Pr.	GROUP	Name
652	N092	Parallel operation communication check time

If the communication between the master and the slave is lost for a certain period, the inverter assumes it is in disconnection state and activates the protective function (E.SER) to shut off the output.


Pr. 652 setting	Description	
0	Parallel operation communication disabled	
0.1 to 120 s	Set the interval of the communication check (signal loss detection) time. If a no-communication state persists for the permissible time or longer, the inverter will trip.	
9999	No communication check (signal loss detection)	

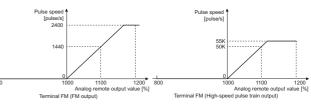
Speed smoothing control

Pr.	GROUP	Name	Pr.	GROUP	Name
653	G410	Speed smoothing control	654	G411	Speed smoothing cutoff frequency

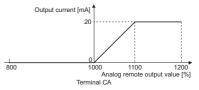
The vibration (resonance) of the machine during motor operation can be suppressed.

- Set Pr.653 to 100%, and check if the vibration is suppressed. If the vibration is not suppressed, raise the setting value of Pr.653 gradually to minimize the vibration.
- When the vibrational frequency due to the mechanical resonance (fluctuation of torque, speed, and converter output voltage) is known using a tester and such, set 1/2 to 1 times of the vibrational frequency to **Pr.654**. (Setting vibrational frequency range can suppress the vibration better.)

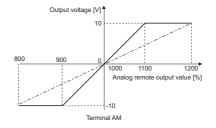
Analog remote output function


Pr.	GROUP	Name	Pr.	GROUP	Name
655	M530	Analog remote output selection	656	M531	Analog remote output 1
657	M532	Analog remote output 2	658	M533	Analog remote output 3
659	M534	Analog remote output 4			

An analog value can be output from the analog output terminal.


Pr. 655 setting	Description	
0 (initial value)	Remote output data is cleared when the power supply is turned OFF.	Remote output data is cleared during an
1	Remote output data is retained when the power supply is turned OFF.	inverter reset.
10	Remote output data is cleared when the power supply is turned OFF.	Remote output data is retained during an
11	Remote output data is retained when the power supply is turned OFF.	inverter reset.

Terminals FM/CA, AM and the analog output terminal of the option FR-A8AY can output the values set in **Pr.656 to Pr.659** (Analog remote output).


When **Pr.54 FM/CA terminal function selection** = "87, 88, 89, or 90" (remote output), the FM type inverter can output a pulse train from terminal FM.

When **Pr.54 FM/CA terminal function selection** = "87, 88, 89, or 90" (remote output), the CA type inverter can output any analog current from terminal CA.

When **Pr.158 AM terminal function selection** = "87, 88, 89, or 90", an analog voltage can be output from terminal AM.

Increased magnetic excitation deceleration V/F

Magnetic flux Sensorless Vector

Pr.	GROUP	Name	Pr.	GROUP	Name
660	G130	Increased magnetic excitation deceleration operation selection	661	G131	Magnetic excitation increase rate
662	G132	Increased magnetic excitation current level			

Increase the loss in the motor by increasing the magnetic flux at the time of deceleration. Deceleration time can be reduced by suppressing the stall prevention (overvoltage) (oL).

It will make possible to reduce the deceleration time without a brake resistor. (Usage can be reduced if a brake resistor is used.)

Pr.	Setting range	Description
660	0 (initial value)	Without increased magnetic excitation deceleration
	1	With increased magnetic excitation deceleration
	0 to 40%	Set the increase of magnetic excitation.
661	9999	Magnetic excitation increase rate 10% under V/F control and Advanced magnetic flux vector control
	(initial value)	Magnetic excitation increase rate 0% under Real sensorless vector control and vector control
662	0 to 300%	The increased magnetic excitation rate is automatically lowered when the output current exceeds the setting value at the time of increased magnetic excitation deceleration.

Setting of increased magnetic excitation rate (Pr.660, Pr.661) When the DC bus voltage exceeds the increased magnetic excitation deceleration operation level during the deceleration, excitation is increased in accordance with the setting value in Pr.661.

Inverter	Increased magnetic excitation deceleration operation level
200 V class	340 V
400 V class	680 V
With 500 V input	740 V

Surrounding air temperature change monitoring

Pr.	GROUP	Name
663	M060	Control circuit temperature signal output level

Turn ON/OFF the control circuit temperature signal (Y207) according to the result of comparison between the Pr.663 setting and the monitored value of the control circuit temperature.

Refer to the page on Pr.882.

Refer to the page on Pr.261.

Pr. 665	
Pr. 668	15

SF-PR slip amount adjustment mode V/F

Pr.	GROUP	Name	Pr.	GROUP	Name
673	G060	SF-PR slip amount adjustment operation selection	674	G061	SF-PR slip amount adjustment gain

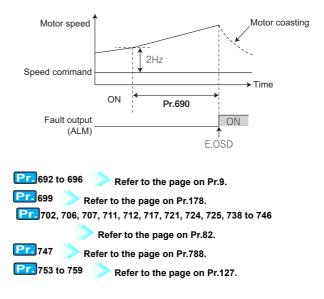
As compared to our conventional SF-JR motor, the slip amount is small for the high-performance energy-saving SF-PR motor. When replacing the SF-JR to the SF-PR, the slip amount is reduced and the rotations per minute increases. Therefore, when the SF-PR is used with the same frequency setting as that of the SF-JR, power consumption may increase as compared to the SF-JR. By setting the slip amount adjustment mode, the frequency command can be adjusted to keep the rotations per minute of the SF-PR equivalent to those of the SF-JR for power consumption reduction. (This function is not available on the FR-A842-P.)

Pr.	Setting range	Description
	2, 4, 6	Set the number of SF-PR motor poles.
673	9999 (initial value)	Slip amount adjustment mode invalid
674	0 to 500%	Setting is available for fine adjustment of the slip amount. To reduce the rotations per minute, set a larger value. To increase the rotations per minute, set a smaller value.

Pr. 679 to 683 Refer to the page on Pr.286.

Pr. 684 Refer to the page on Pr.82.

Pr. 686 to 689 Refer to the page on Pr.503.


Deceleration check Vector

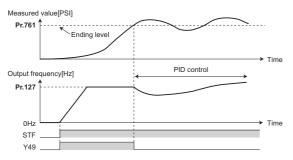
Pr.	GROUP	Name
690	H881	Deceleration check time

This function can stop the inverter output when the motor is accelerated accidentally during operation.

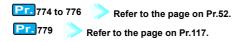
This prevents a malfunction due to incorrect encoder pulse settings.

Pr. 690 setting	Description
0 to 3600 s	Set the time required to shut off output due to deceleration check after the start signal is OFF.
9999	No deceleration check

PID pre-charge function


Pr.	GROUP	Name	Pr.	GROUP	Name
760	A616	Pre-charge fault selection	761	A617	Pre-charge ending level
762	A618	Pre-charge ending time	763	A619	Pre-charge upper detection level
764	A620	Pre-charge time limit	765	A656	Second pre-charge fault selection
766	A657	Second pre-charge ending level	767	A658	Second pre-charge ending time
768	A659	Second pre-charge upper detection level	769	A660	Second pre-charge time limit

This function is to drive the motor at a certain speed before starting PID control. This function is useful for a pump with a long hose. Without this function, PID control would start before the pump is filled with water, and proper control would not be performed.


Pr.	Setting range	Description
760	0 (initial value)	Fault indication with output shutoff immediately after a pre-charge fault occurs.
700	1	Fault indication with deceleration stop after a pre-charge fault occurs.
761	0 to 100%	Set the measurement level to end the pre- charge operation.
/01	9999 (initial value)	Without pre-charge ending level
762	0 to 3600 s	Set the time to end the pre-charge operation.
102	9999 (initial value)	Without pre-charge ending time
763	0 to 100%	Set the upper limit for the pre-charged amount. A pre-charge fault occurs when the measured value exceeds the setting during pre-charging.
	9999 (initial value)	Without pre-charge upper limit level
764	0 to 3600 s	Set the time limit for the pre-charge operation. A pre-charge fault occurs when the pre-charge time exceeds the setting.
	9999 (initial value)	Without pre-charge time limit

· Example of pre-charge operation

When the measured amount reaches the pre-charge ending level (**Pr.761 Pre-charge ending level** \neq "9999")The pre-charge operation ends when the measured value reaches the **Pr.761** setting or higher, then the PID control is performed.

 Turning ON the RT signal enables the second pre-charge function.

Low-speed range torque characteristics selection

Pr.	GROUP	Name	Pr.	GROUP	Name
788	G250	Low speed range torque characteristic selection	747	G350	Second motor low- speed range torque characteristic selection

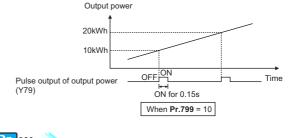
The torque characteristics in a low-speed range under PM sensorless vector control can be changed. (This function is not available on the FR-A842-P.)

Pr.	Setting range	Description		
788	0	Disables the low-speed range torque characteristic (current synchronization operation).		
100	9999 (initial value) *1	Enables the low-speed range torque characteristic (high frequency superposition control)		
747	0	Disables the low-speed range torque characteristic (current synchronization operation) while the RT signal is ON.		
747	9999 (initial value) *1	Enables the low-speed range torque characteristic (high frequency superposition control) while the RT signal is ON.		

*1 The low-speed range high-torque characteristic (current synchronization operation) is disabled for PM motors other than MM-CF, even if "9999" is set.

- Use Pr.747 to switch the torque characteristic according to the application or to switch among motors connected to one inverter.
- **Pr.** 791, 792 **Refer** to the page on Pr.7.

Pulse train output of output power (Y79 signal)


Pr.	GROUP	Name
799	M520	Pulse increment setting for output power

After power ON or inverter reset, output signal (Y79 signal) is output in pulses every time accumulated output power, which is counted after the **Pr.799 Pulse increment setting for output power** is set, reaches the specified value (or its integral multiples).

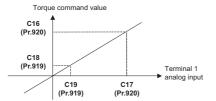
Pr. 799 setting	Description
0.1 kWh, 1 kWh (initial value), 10 kWh, 100 kWh, 1000 kWh	Pulse train output of output power (Y79) is output in pulses at every output power (kWh) that is specified.

- The inverter continues to count the output power at retry function or when automatic restart after instantaneous power failure function works without power OFF of output power (power failure that is too short to cause an inverter reset), and it does not reset the count.
- If power failure occurs, output power is counted from 0 kWh again.
 Assign pulse output of output power (Y79: setting value 79

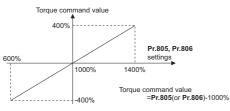
 (positive logic) 170 (posetive logic)) to env of **Pr 100 to Pr 106**
- (positive logic), 179 (negative logic)) to any of **Pr.190 to Pr.196** (**Output terminal function selection**).

Refer to the page on Pr.80. Refer to the page on Pr.10.

Torque command source selection


Sensorless Vector

Pr.	GROUP	Name	Pr.	GROUP	Name
801	H704	Output limit level	803	G210	Constant output range torque characteristic selection
804	D400	Torque command source selection	805	D401	Torque command value (RAM)
806	D402	Torque command value (RAM, EEPROM)	1114	D403	Torque command reverse selection
432	D120	Pulse train torque command bias	433	D121	Pulse train torque command gain


For torque control, the torque command source can be selected.

Pr.	Setting range	Description	n				
	0 to 400%	Set the torque current limit level.					
801	9999 (initial value)	The torque limit setting value is used for limiting torque current level.					
	0 (initial value), 10	Constant motor output command	In the torque				
803	1, 11	Constant torque command	command setting, select torque				
803	2	The torque is constant unless the output limit of the torque current is reached. (The torque current is limited.)	command for the constant output area.				
	0 (initial value)	Torque command based on the analog input to terminal 1					
	1	Torque command by the parameters Setting value of Pr.805 or Pr.806 (-400% to 400%)					
	2	Torque command by the pulse train input (FR-A					
804	3	Torque command via CC-Link communication (FR A8NC/FR-A8NCE/FR-A800-GF) Torque command via PROFIBUS-DP communication (FR-A8NP)					
	4	Digital input from the option (FR-A8AX)					
	5	Torque command via CC-Link of A8NC/FR-A8NCE/FR-A800-GF	-)				
	6	Torque command via PROFIBUS-DP communication (FR-A8NP)					
805	600 to 1400%	Torque command values can be set by setting Pr.805 (RAM) and Pr.806 (RAM, EEPROM). (Communication options can also be used for the					
806	600 to 1400%	(communication options can also be used for setting.) In this case, set an appropriate value for the s limit value to prevent overspeed.					

 Torque command based on the analog input to terminal 1 The following figure shows the torque command based on the analog input to terminal 1 according to C16, C17 (Pr.919), C18, and C19 (Pr.920).

Torque command by the parameters The following diagram shows relation between the **Pr.805** or **Pr.806** setting and the actual torque command value. The torque command is shown by offset from 1000% that is regarded as 0%.

• The **Pr.1114** setting determines whether or not the torque command polarity is reversed when the reverse rotation command (STR) is turned ON.

Pr.1114 setting	Torque command polarity (sign) when the STR signal is ON
0	Not reversed
1 (initial value)	Reversed

Speed limit under torque control

Sensorless Vector

Pr.	GROUP	Name	Pr.	GROUP	Name
807	H410	Speed limit selection	808	H411	Forward rotation speed limit/speed limit
809	H412	Reverse rotation speed limit/reverse- side speed limit	1113	H414	Speed limit method selection

When the inverter is operating under torque control, motor overspeeding may occur if the load torque drops to a value less than the torque command value. Set the speed limit value to prevent such overspeeding.

• The speed limit control method can be selected using Pr.1113.

Pr.807 setting	Speed limit control system	Speed limit
9999	Mode 1 (speed control by analog input)	Forward rotation speed limit Pr.807 = "0": Speed command under speed control Pr.807 = "1": Pr.808 setting value Pr.807 = "2": Analog input at 0 to 10 V input (to terminal 1). Pr.1 setting value at -10 to 0 V input (to terminal 1). Reverse rotation speed limit Pr.807 = "0": Speed command under speed control Pr.807 = "1": Pr.809 setting value. If Pr.807 = "2": Analog input at 0 to 10 V input (to terminal 1). Analog input at -10 to 0 V input (to terminal 1).
0 (initial value)	Mode 2 (normal setting)	
1	Mode 3 (winding/ unwinding by a positive torque command)	Speed limit Pr.807 = "0, 2": Speed command under speed control Pr.807 = "1": Pr.808 setting value
2	Mode 4 (winding/ unwinding by a negative torque command)	Inverted side speed limit Pr.809 setting value
10	Switchover by external terminals	X93 signal OFF: Speed limit by the speed limit mode 3 X93 signal ON: Speed limit by the speed limit mode 4

PL810 to 817 Refer to the page on Pr.22.

Refer to the page on Pr.37.

٠

166 When setting parameters, refer to the Instruction Manual (Detailed) and understand instructions.

Easy gain tuning selection

Sensorless Vector PM

Pr.	GROUP	Name	Pr.	GROUP	Name
818	C112	Easy gain tuning response level setting	819	C113	Easy gain tuning selection

The load inertia ratio (load moment of inertia) for the motor is calculated in real time from the torque command and rotation speed during motor driving by the vector control. Gains for each control (**Pr.422**, **Pr.820**, **Pr.821**, **and Pr.828**) are set automatically from this load inertia ratio and the setting value for the response level (**Pr.818**). Under Real sensorless vector control or PM sensorless vector control, enter the load inertia ratio manually.

The work required for gain adjustment is reduced.

- Set the response level in **Pr.818** to calculate each gain from the load inertia ratio.
- The **Pr.819** setting enables/disables the easy gain tuning.

Pr.	Setting range	Description
818	1 to 15	1: Slow response ↓ 15: Fast response
	0 (initial value)	No easy gain tuning
819	1	Gain is calculated with load calculation. (This function is valid under vector control.)
	2	Gain is calculated with load (Pr.880) manual input.

Proportional gain setting for speed loop

Pr.	GROUP	Name	Pr.	GROUP	Name
820	G211	Speed control P gain 1	830	G311	Speed control P gain 2
1116	G206	Constant output range speed control P gain compensation	1117	G261	Speed control P gain 1 (per-unit system)
1118	G361	Speed control P gain 2 (per-unit system)	1121	G260	Per-unit speed control reference frequency

Set the proportional gain for speed loop. (Setting this parameter higher improves the speed response and reduces the speed fluctuation caused by external disturbance. However, too large setting causes vibration or noise.)

• The setting range of **Pr.820 Speed control P gain 1** and **Pr.830 Speed control P gain 2** is 0 to 1000%. The initial value of **Pr.820** is 60%.

- A speed loop proportional gain can be set in the per-unit system using **Pr.1117**, **Pr.1118**, and **Pr.1121**.
- As the speed control response level is decreased in the constant output range (at the rated speed or more) due to the weak field magnet, the speed control P gain is compensated in Pr.1116.

Integral time setting for speed control Sensorless Vector PM

Pr.	GROUP	Name	Pr.	GROUP	Name
821		Speed control integral time 1		G312	Speed control integral time 2
1115	G218	Speed control integral term clear time	1348	G263	P/PI control switchover frequency

Set the integral compensation time for speed loop.

Setting this parameter lower shortens the return time to the original speed when the speed fluctuates due to external disturbance. However, too small setting causes overshoot.

Setting this parameter higher improves the level of safety. However, large setting prolongs the return time (response time) and may cause undershoot.

When the X44 signal is turned ON or the motor speed falls below the **Pr.1348** setting, speed loop integration is stopped and the accumulated integral term is reduced and cleared according to **Pr.1115**.

Speed detection filter function

Sensorless Vector PM

Pr.	GROUP	Name	Pr.	GROUP	Name
823	G215	Speed detection filter 1	833	G315	Speed detection filter 2

Set the time constant of primary delay filter for speed feedback signal.

Speed loop response is reduced. Under ordinary circumstances, therefore, use the initial value as it is.

If there is speed ripple due to high frequency disturbance, set a time constant.

Speed is oppositely destabilized if the setting value is too large.

Proportional gain setting for current

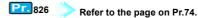
Pr.	GROUP	Name	Pr.	GROUP	Name
824	G213	Torque control P gain 1 (current loop proportional gain)	834	G313	Torque control P gain 2

Set the proportional gain under torque control.

If the setting value is large, changes in the current command can be followed well and current fluctuation relative to external disturbance is smaller. If the setting value is however too large, it becomes unstable and high frequency torque pulse is produced.

The setting range of **Pr.824 Torque control P gain 1 (current loop proportional gain)** and **Pr.834 Torque control P gain 2** is 0 to 500%. The initial value of **Pr.824** is 100%.

For ordinary adjustment, try to set within the range of 50 to 200%.


Current control integral time setting Sensorless Vector

Pr.	GROUP	Name	Pr.	GROUP	Name
825	G214	Torque control integral time 1 (current loop integral time)	835	G314	Torque control integral time 2

Set the current loop integral compensation time under torque control.

Setting this parameter smaller increases torque response. However, too small setting may destabilize current.

If the setting value is small, it produces current fluctuation toward disturbance, decreasing time until it returns to the original current value.

 Pr. COP
 Name
 Pr. COP
 Name

 827
 G216
 Torque detection filter 1
 837
 G316
 Torque detection filter 2

Set the time constant of primary delay filter for torque feedback signal.

Current loop response is reduced. Under ordinary circumstances, therefore, use the initial value as it is.

Speed feed forward control and model adaptive speed control

Sensoriess Vector PM

Pr.	GROUP	Name	Pr.	GROUP	Name
828	G224	Model speed control gain	877	G220	Speed feed forward control/model adaptive speed control selection
878	G221	Speed feed forward filter	879	G222	Speed feed forward torque limit
880	C114	Load inertia ratio	881	G223	Speed feed forward gain
1119	G262	Model speed control gain (per-unit system)	1121	G260	Per-unit speed control reference frequency

Speed feed forward control or model adaptive speed control can be selected using parameter settings.

Under speed feed forward control, the motor trackability for speed command changes can be improved.

Under model adaptive speed control, the speed trackability and the response level to motor external disturbance torque can be adjusted individually.

Pr. 877 setting	Description
0 (initial value)	Perform normal speed control.
1	Perform speed feed forward control.
2	Model adaptive speed control becomes valid.

Speed feed forward control

When the load inertia ratio is set in **Pr.880**, the required torque for the set inertia is calculated according to the acceleration and deceleration commands, and the torque is generated quickly. When the inertia ratio is to be estimated by easy gain tuning, the estimated inertia ratio is stored as the setting value of **Pr.880**. The speed feed forward is calculated based on this setting value. When the speed feed forward gain is 100%, the calculation result for speed feed forward is applied as is.

If the speed command changes suddenly, the torque is increased by the speed feed forward calculation. The maximum limit for the speed feed forward torque is set in **Pr.879**.

The speed feed forward result can also be lessened with a primary delay filter in **Pr.878**.

Model adaptive speed control

The model speed of the motor is calculated, and the feedback is applied to the speed controller on the model side. Also, this model speed is set as the command of the actual speed controller. The inertia ratio of **Pr.880** is used when the speed controller on the model side calculates the torque current command value. When the inertia ratio is to be estimated by easy gain tuning, the setting value of **Pr.880** is overwritten by the estimated inertia ratio. The torque current command value is calculated based on this setting value. The torque current command of the speed controller on the model side is added to the output of the actual speed controller, and set as the input of the ig current control.

Pr.828 is used for the speed control on the model side (P control), and first gain **Pr.820** is used for the actual speed controller. The model adaptive speed control is enabled for the first motor. Even if the driven motor is switched to the second motor while **Pr.877** = "2", the second motor is operated as **Pr.877** = "0". The model adaptive speed control gain can be set in the per-unit

system using **Pr.1119** and **Pr.1121**.

Pr. 830	Defer to the name on Dr 920
	Refer to the page on Pr.820.
Pr. 831	Refer to the page on Pr.821.
Pr. 832	Refer to the page on Pr.74.
Pr. 833	Refer to the page on Pr.823.
Pr. 834	Refer to the page on Pr.824.
Pr. 835	Refer to the page on Pr.825.
Pr. 836	Refer to the page on Pr.74.
Pr. 837	Refer to the page on Pr.827.

Torque bias Sensorless Vector

Pr.	GROUP	Name	Pr.	GROUP	Name
840	G230	Torque bias selection	841	G231	Torque bias 1
842	G232	Torque bias 2	843	G233	Torque bias 3
844	G234	Torque bias filter	845	G235	Torque bias operation time
846	G236	Torque bias balance compensation	847	G237	Fall-time torque bias terminal 1 bias
848	G238	Fall-time torque bias terminal 1 gain			

The torque bias function can be used to make the starting torque start-up faster. At this time, the motor starting torque can be adjusted with a contact signal or analog signal.

Pr. 840 setting	Description			
0	Set the torque bias amount using contact signals (X42, X43) in Pr.841 to Pr.843 .			
1	Set the torque bias amount using terminal 1 in any of C16 to C19 . (When the squirrel cage rises during forward motor rotation.)			
2	Set the torque bias amount using terminal 1 in any of C16 to C19 . (When the squirrel cage rises during reverse motor rotation.)			
3	The torque bias amount using terminal 1 can be set automatically in C16 to C19 and Pr.846 according to the load.			
24	For details of the torque bias command via PROFIBUS			
25	communication (FR-A8NP), refer to the Instruction Manual of the FR-A8NP (option).			
9999 (initial value)	No torque bias, rated torque 100%			

Pr.841 Torque bias 1, Pr.842 Torque bias 2, and Pr.843 Torque bias 3

The rated torque of 100% equals to the torque bias setting value of 1000%, which is the central value of the torque. When the setting value is 1000%, the bias value is "0".

- **Pr.844 Torque bias filter** The torque start-up can be made slower. The torque start-up operation at this time is the time constant of the primary delay filter.
- **Pr.845 Torque bias operation time** Set the time for continuing the output torque simply by using the command value for the torque bias.
- **Pr.846 Torque bias balance compensation** Set the voltage of the torque bias analog input value that is input to terminal 1 to compensate the balance of the torque bias amount.
- Pr.847 Fall-time torque bias terminal 1 bias, Pr.848 Fall-time torque bias terminal 1 gain

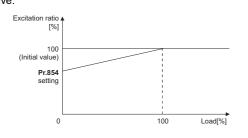
Set the torque bias amount of when the cage is descended.

Pr. 849	1	Defente	 	

0+3	Refer to the page on Pr.7	4.

Pr. 850 > Refer to the page on Pr.10.

Pr. 851, 852 > Refer to the page on Pr. 359.


Pr. 853 > Refer to the page on Pr. 285.

Explanations of Parameters

Excitation ratio Sensorless Vector

Pr.	GROUP	Name
854	G217	Excitation ratio

The excitation ratio can be lowered to enhance efficiency for light loads. (Motor magnetic noise can be reduced.) When excitation ratio is reduced, output torque startup is less responsive.

Pr. 855

Refer to the page on Pr.376.

Analog input terminal (terminal 1, 4) function assignment

Pr.	GROUP	Name	Pr.	GROUP	Name
858	T040	Terminal 4 function assignment	868	T010	Terminal 1 function assignment

The analog input terminal 1 and terminal 4 functions are set and changeable with parameters.

	Setting	V/F control, Advanced	Real sense sensorless v	orless vector c ector control, v	ontrol, PM vector control
Pr.	range	magnetic flux vector control	Speed control	Torque control	Position control
	0 (initial value)	Frequency setting auxiliary	Speed setting auxiliary	Speed limit assistance	-
	1	-	Magnetic flux command *1	Magnetic flux command *1	Magnetic flux command *1
	2	-	Regenerative driving torque limit (Pr.810 = 1)	-	Regenerative driving torque limit (Pr.810 = 1)
	3	-	-	Torque command (Pr.804 = 0)	-
868	4	Stall prevention operation level input	Torque limit (Pr.810 = 1)	Torque command (Pr.804 = 0)	Torque limit (Pr.810 = 1)
	5	-	-	Forward/ reverse rotation speed limit (Pr.807 = 2)	-
	6	-	Torque bias input (Pr.840 =1, 2, 3)	-	-
	9999	-	-	-	-
	0 (initial value)	Frequency command (AU signal-ON)	Speed command (AU signal-ON)	Speed limit (AU signal-ON)	-
858	1	-	Magnetic flux command *1	Magnetic flux command *1	Magnetic flux command *1
000	4	Stall prevention operation level input	Torque limit (Pr.810 = 1)	-	Torque limit (Pr.810 = 1)
	9999	-	-	-	-

-: No function

This function is valid under vector control

*1

Refer to the page on Pr.82.

Refer to the page on Pr.80.

Encoder pulse dividing output Vector

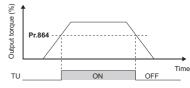
Pr.	GROUP	Name	Pr.	GROUP	Name
413	M601	Encoder pulse division ratio	863	M600	Control terminal option-Encoder pulse division ratio

When the FR-A8AL or FR-A8TP is used, the encoder pulse at the motor end can be divided in division ratio set in Pr.413 (for the FR-A8AL) or Pr.863 (for the FR-A8TP) for the signal output. Use this parameter to make the response of the machine to be input slower, etc.

Output torque detection Magnetic flux Sensorless Vector PM

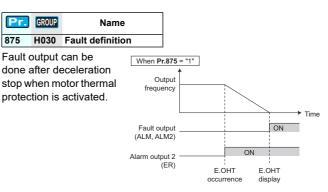
Pr.	GROUP	Name
864	M470	Torque detection

A signal is output when the motor torque is higher than the setting of Pr.864


This function can be used for electromagnetic brake operation, open signal, etc.

The Torque detection (TU) signal turns ON when the output torque reaches the detection torque value set in Pr.864 or higher.

The Torque detection (TU) signal turns OFF when the output torque drops lower than the detection torque value.


Pr. Pr

Pr. Pr. Pr. Pr.

865	Refer to the page on Pr.41.
866	Refer to the page on Pr.55.
867	Refer to the page on Pr.C0(900).
868	Refer to the page on Pr.858.
869	Refer to the page on Pr.C0(900).
870	Refer to the page on Pr.41.
872	Refer to the page on Pr.251.
873	Refer to the page on Pr.285.
874	Refer to the page on Pr.22.

Fault definition

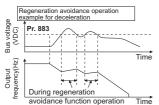
• Explanations of Parameters

Pr.875 setting	Operation	Description
0 (initial value)	Normal operation	The output of the inverter is shut off immediately if any fault occurs. At this time, the alarm output 2 signal (ER) and a fault signal are output.
1	Fault definition	At activation of the external thermal relay (E.OHT), motor load (electronic thermal O/L relay) (E.THM) and PTC thermistor (PTC) protective functions, the alarm output 2 (ER) signalis is displayed, and the motor decelerates to stop. After it stops, a fault signal is output. During fault occurrence aside from the E.OHT, E.THM and E.PTC, the output is immediately shut off, and the fault is outputted. Under position control, the operation of the setting value "0" is applied.

Pr. 876

Refer to the page on Pr.9.

Pr.877 to 881 ≫ Refer to the page on Pr.828.


Regeneration avoidance function

Pr.	GROUP	Name	Pr.	GROUP	Name
882	G120	Regeneration avoidance operation selection	883	G121	Regeneration avoidance operation level
884	G122	Regeneration avoidance at deceleration detection sensitivity	885	G123	Regeneration avoidance compensation frequency limit value
886	G124	Regeneration avoidance voltage gain	665	G125	Regeneration avoidance frequency gain

The regenerative status can be avoided by detecting the regenerative status and raising the frequency.

 Continuous operation is possible by increasing the frequency automatically so it will not go into regenerative operation even when the fan is turned forcefully by other fans in the same duct.

Pr.	Setting range	Description			
	0 (initial value)	Disables regeneration avoidance function			
882	1	Constantly enables regeneration avoidance function			
	2	Enables regeneration avoidance function only during constant-speed operation			
883	300 to 1200 V	Set the bus voltage level to operate the regeneration avoidance operation. When the bus voltage level is set low, it will be harder to generate overvoltage error, but actual deceleration time will be longer. Set the setting value higher than power supply			
		voltage × √2.			
	0 (initial value)	Disables regeneration avoidance due to bus voltage change rate			
884	1 to 5	Set the sensitivity to detect the bus voltage change rate. Setting value 1 5 Detection sensitivity Low			
885	0 to 590 Hz	Set the limit value for frequency to rise when the regeneration avoidance function operates.			
	9999	Disables frequency limit			
886	0 to 200%	Adjust the response at the time of regeneration avoidance operation. When the setting value is set larger, response against the bus voltage change will improve, but the output frequency			
665	0 to 200%	may become unstable. If the load inertia of the motor is large, set the setting value of Pr.886 smaller. When the vibration cannot be stabilized even if the setting value of Pr.886 is made smaller, set the setting value of Pr.665 smaller.			

Free parameter

Pr.	GROUP	Name	Pr.	GROUP	Name
888	E420	Free parameter 1	889	E421	Free parameter 2

These parameters can be used for any purpose.

Any number within the setting range of 0 to 9999 can be input. For example, these numbers can be used:

• As a unit number when multiple units are used.

- As a pattern number for each operation application when multiple units are used.
- · As the year and month of introduction or inspection.

Energy saving monitor

Pr.	GROUP	Name	Pr.	GROUP	Name
891	M023	Cumulative power monitor digit shifted times	892	M200	Load factor
893	M201	Energy saving monitor reference (motor capacity)	894	M202	Control selection during commercial power-supply operation
895	M203	Power saving rate reference value	896	M204	Power unit cost
897	M205	Power saving monitor average time	898	M206	Power saving cumulative monitor clear
899	M207	Operation time rate (estimated value)	52	M100	Operation panel main monitor selection
54	M300	FM/CA terminal function selection	158	M301	AM terminal function selection
774	M101	Operation panel monitor selection 1	775	M102	Operation panel monitor selection 2
776	M103	Operation panel monitor selection 3	992	M104	Operation panel setting dial push monitor selection

From the power consumption estimated value during commercial power supply operation, the energy saving effect by use of the inverter can be monitored and output.

 The items that can be monitored on the power saving monitor (Pr.52, Pr.54, Pr.158, Pr.774 to Pr.776, Pr.992 = "50") are indicated below.

(Only Power saving and Average power saving can be set to **Pr.54** (terminal FM, terminal CA) and **Pr.158** (terminal AM).)

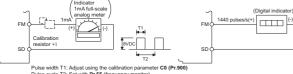
Energy saving monitored item	Description and formula	Increment		
Power saving	Power supply during commercial power supply operation - input power monitor			
Power saving rate				
Average power saving				
$\label{eq:response} \begin{array}{ c c c } \hline \mbox{Average} & The average power saving ratio with the commercial power supply operation as 100%. \\ \hline Σ (Power saving rate \times \Delta t)$ \hline $\mathbf{Pr.897}$ \times 100$ \\ \hline $\mathbf{Pr.897}$ \times 100$ \\ \hline $\mathbf{Pr.893}$ \times 100$ \\ \hline $\mathbf{Pr.894}$ \times 100$ \\ \hline $\mathbf{Pr.894}$$		0.1%		
Average power cost savings	The average power saving in terms of cost. Average power saving × Pr.896	0.01/0.1 *1		

 The items that can be monitored on the cumulative energy saving monitor (Pr.52, Pr.774 to Pr.776, Pr.992 = "51") are indicated below. (The monitor value of the cumulative monitor can be shifted to the right with Pr.891 Cumulative power monitor digit shifted times.)

Energy saving monitored item	Description and formula	Increment
Power saving	The cumulative power saving is added up per hour.	0.01 kWh *1
amount	Σ (Power saving rate $\times \Delta t$)	0.1 kWh *2
Power cost	The power saving amount in terms of cost.	0.01 *1
saving	Power saving × Pr.896	0.1 *2
Annual power	Estimated value of annual power saving amount. Power saving amount Pr.899	0.01 kWh *1
saving amount	$\frac{1000}{\text{Operation time during power}} \times 24 \times 365 \times \frac{1100}{100}$ saving accumulation	0.1 kWh *2
Annual power	Annual power saving amount in terms of cost.	0.01 *1
cost savings	Annual power saving amount × Pr.896	0.1 *2

- *1 Increment for the FR-A820-03160(55K) or lower and the FR-A840-01800(55K) or lower
- *2 Increment for the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher

Adjusting terminal FM/CA and terminal AM (calibration)


Pr.	GROUP	Name	Pr.	GROUP	Name
C0 (900)	M310	FM terminal calibration	C1 (901)	M320	AM terminal calibration
C8 (930)	M330	Current output bias signal	C9 (930)	M331	Current output bias current
C10 (931)	M332	Current output gain signal	C11 (931)	M333	Current output gain current
867	M321	AM output filter	869	M334	Current output filter

By using the operation panel or parameter unit, terminals FM, CA and AM can be calibrated to the full scale.

Terminal FM calibration (C0 (Pr.900))

Terminal FM is preset to output pulses. By setting the calibration parameter **C0 (Pr.900)**, the meter connected to the inverter can be calibrated by parameter setting without use of a calibration resistor.

Using the pulse train output of terminal FM, a digital display can be provided to connect a digital counter. The monitor value is 1440 pulses/s output at the full-scale value of **Pr.54 FM/CA** terminal function selection.

Pulse width T1: Adjust using the calibration parameter C0 (P Pulse cycle T2: Set with Pr.55 (frequency monitor) Set with Pr.56 (current monitor)

*1 Not needed when the operation panel (FR-DU08) or parameter unit (FR-PU07) is used for calibration. Use a calibration resistor when the indicator (frequency meter)

needs to be calibrated by a neighboring device because the indicator is located far from the inverter.

However, the frequency meter needle may not deflect to full-scale if the calibration resistor is connected. In this case, calibrate additionally with the operation panel or parameter unit.

Calibration with Pr.900 cannot be done when terminal FM is set to open collector output with $Pr.291\ Pulse\ train\ I/O\ selection.$

- Calibration of terminal AM (C1 (Pr.901)) Terminal AM is initially set to provide a 10 VDC output in the fullscale state of the corresponding monitor item. Calibration parameter C1 (Pr.901) allows the output voltage ratio (gains) to be adjusted according to the meter scale. Note that the maximum output voltage is 10 VDC.
- Using Pr.867, the output voltage response of terminal AM can be adjusted in the range of 0 to 5 s.
- Terminal CA calibration (C0 (Pr.900), C8 (Pr.930) to C11 (Pr.931)) Terminal CA is initially set to provide a 20 mADC output in the fullscale state of the corresponding monitor item. Calibration parameter C0 (Pr.900) allows the output current ratio (gains) to be adjusted according to the meter scale. Note that the maximum output current is 20 mA DC.

- Set a value at the minimum current output in the calibration parameters C8 (Pr.930) and C9 (Pr.930). Calibration parameter C10 (Pr.931) and C11 (Pr.931) are used to set a value at the maximum current output.
- Using **Pr.869**, the output current response of terminal CA can be adjusted in the range of 0 to 5 s.

Pr.C2 (902) to C7 (905), C12 (917) to C19 (920), C38 (932) to C41 (933) Refer to the page on Pr.125. Pr.C8 (930) to C11 (931) Refer to the page on Pr.C0 (900). Pr.C42 (934) to C45 (935) Refer to the page on Pr.127.

Using the power supply exceeding 480 V

Pr.	GROUP	Name
977	E302	Input voltage mode selection

To input a voltage between 480 V and 500 V to the 400 V class inverter, change the voltage protection level.

Pr. 977 setting	Description		
(initial value) 400 V class voltage protection level			
1	500 V class voltage protection level		

Parameter clear, parameter copy, and initial value change list

Pr.	GROUP	Name	Pr.	GROUP	Name
989	E490	Parameter copy alarm release	Pr.CLF	र	Parameter clear
ALL.CL		All parameter clear	Err.CL		Fault history clear
Pr.CPY		Parameter copy	Pr.CHG		Initial value change list

- Set **Pr.CLR Parameter clear** = "1" to initialize all parameters. (Calibration parameters are not cleared.)*1
- Set ALL.CL All parameter clear = "1" to initialize all parameters.*1

• Set **Err.CL Fault history clear** = "1" to clear the fault history.

Use **Pr.CPY** to copy the parameter setting to multiple inverters.

Pr. CPY setting	Description
0	Cancel
1.RD	Copy the source parameters to the operation panel.
2.WR	Write the parameters copied to the operation panel to the destination inverter.
3.VFY	Verify parameters in the inverter and operation panel.

If the parameter setting is copied from the FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower to the FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher, or from the FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher to the FR-A820-03160(55K) or lower and

FR-A840-01800(55K) or lower, the $\sum P$ warning appears on the operation panel.

After setting the parameters that have the different setting range, set **Pr.989** as follows.

Pr. 989 setting	Operation
10	Cancels the warning of FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower.
100	Cancels the warning of FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher.

To display only the numbers of the parameters that have been changed from their initial values, use **Pr.CHG Initial value change list**.

*1 If **Pr.77 Parameter write selection = "1"**, the parameter setting is not cleared.

Buzzer control of the operation panel

Pr.	GROUP	Name
-----	-------	------

990 E104 PU buzzer control

The PU (operation panel or parameter unit) key sound and buzzer can be turned ON/OFF.

Pr.990 setting	Description	
0	Without buzzer	
1 (initial value)	With buzzer	

PU contrast adjustment

Pr.	GROUP	Name
991	E105	PU contrast adjustment

Contrast adjustment of the LCD of the LCD operation panel (FR-LU08) and the parameter unit (FR-PU07) can be performed. Decreasing the setting value makes the contrast lighter.

Pr. 991 setting	Description
0 to 63	0: Light ↓ 63: Dark
Pr. 992)	Refer to the page on Pr.52.

Fault initiation function

Pr. GROUP		Name		
997	H103	Fault initiation		

A fault (protective function) is initiated by setting the parameter.
This function can be used to check how the system operates at activation of a protective function. The read value is always "9999".
Even if "9999" is set, the protective function is not activated.
Faults that can be written with **Pr.997 Fault initiation**

Pr.997 setting	Fault	Pr.997 setting	Fault	Pr.997 setting	Fault
16	E.OC1	161	E.OP1	211	E.OD
17	E.OC2	164	E.16	213	E.MB1
18	E.OC3	165	E.17	214	E.MB2
19	E.OCT	166	E.18	215	E.MB3
32	E.OV1	167	E.19	216	E.MB4
33	E.OV2	168	E.20	217	E.MB5
34	E.OV3	169	E.PA1	218	E.MB6
35	E.OVT	170	E.PA2	219	E.MB7
48	E.THT	176	E.PE	220	E.EP
49	E.THM	177	E.PUE	222	E.MP
64	E.FIN	178	E.RET	225	E.IAH
80	E.IPF	179	E.PE2	228	E.LCI
81	E.UVT	192	E.CPU	229	E.PCH
82	E.ILF	193	E.CTE	230	E.PID
96	E.OLT	194	E.P24	231	E.EHR
97	E.SOT	196	E.CDO	241	E.1
98	E.LUP	197	E.IOH	242	E.2
99	E.LDN	198	E.SER	243	E.3
112	E.BE	199	E.AIE	245	E.5
128	E.GF	200	E.USB	246	E.6
129	E.LF	201	E.SAF	247	E.7
144	E.OHT	208	E.OS	251	E.11
145	E.PTC	209	E.OSD	253	E.13
160	E.OPT	210	E.ECT		

Pr.998 and IPM

Refer to the page 241.

Automatic parameter setting

Pr.	GROUP	Name	Pr.	GROUP	Name
999	E431	Automatic parameter setting	AUTO		Automatic parameter setting

Parameter settings are changed as a batch. Those include communication parameter settings for the Mitsubishi Electric's human machine interface (GOT) connection and the parameter setting for the rated frequency settings of 50 Hz/60 Hz. Multiple parameters are changed automatically. Users do not have to consider each parameter number. (Automatic parameter setting mode)

Pr.999 setting	Description		Operation in the automatic parameter setting mode (☐ [_] [])
9999 (initial value)	No action		-
1	Sets the standard monitor indicator setting of PID control.		"AUTO" \rightarrow "PID" \rightarrow Write "1"
2	Automatically indicator for	y sets the monitor PID control.	"AUTO" \rightarrow "PID" \rightarrow Write "2"
10	Automatically sets the communication parameters for the GOT connection with a PU connector (FREQROL 500/700/ 800, SENSORLESS SERVO)		"AUTO" → "GOT" → Write "1"
11	Automatically sets the communication parameters for the GOT connection with RS- 485 terminals (FREQROL 500/ 700/800, SENSORLESS SERVO)		-
12	Automatically sets the communication parameters for the GOT connection with a PU connector (FREQROL 800 (Automatic Negotiation))		"AUTO" \rightarrow "GOT" \rightarrow Write "2"
13	Automatically sets the communication parameters for the GOT connection with RS- 485 terminals (FREQROL 800 (Automatic Negotiation))		-
20	50 Hz rated frequency Sets the related parameters of the rated frequency		"AUTO" \rightarrow "F50" \rightarrow Write "1"
21	60 Hz rated frequency	according to the power supply frequency	-

Direct setting

Pr.	GROUP	Name
1000	E108	Direct setting selection

The PID set point setting screen (direct setting screen) can be displayed first on the LCD operation panel according to the parameter setting.

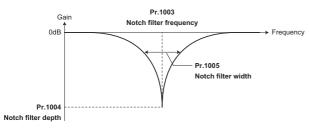
Pr.1000 setting	Description
0 (initial value)	Displays the frequency setting screen.
1	Displays the direct setting screen (for set point setting).
2	Displays the direct setting screen (for set point setting) and the frequency setting screen.

Parallel operation selection (FR-A842-P)

Pr.	GROUP	Name
1001	E390	Parallel operation selection

The master/slave inverters to be operated in parallel can be set.

Pr.1001	Descr	iption	
setting	Master/slave station	Number of slave stations	First monitor
1	Slave station 1	-	51¥. 1
2	Slave station 2	-	
100 (initial value)	Master station	0	-
200		1	-
300		2	-


Pr. 1002 >> Refer to the page on Pr.82.

N	otch	filter Sensorles	s Ve	ctor	PM
Pr.	GROUP	Name	Pr.	GROUP	Name
1003	G601	Notch filter frequency	1004	G602	Notch filter depth

1005 G603 Notch filter width

The response level of speed control in the resonance frequency band of mechanical systems can be lowered to avoid mechanical resonance.

Pr.	Setting range	Description
	0 (initial value)	No notch filter
1003	8 to 1250 Hz	Set the frequency for the center of gain attenuation.
1004	0 to 3	0 (Deep) \rightarrow 3 (Shallow)
1005	0 to 3	0 (Narrow) \rightarrow 3 (Wide)

Simple clock function

Pr.	GROUP	Name	Pr.	GROUP	Name
1006	E020	Clock (year)	1007	E021	Clock (month, day)
1008	E022	Clock (hour, minute)			

The time can be set. The time can only be updated while the inverter power is ON.

Pr.	Description
1006	Set the year (A.D.). Initial value: 2000
1007	Set the month and day. 1000 and 100 digits: January to December 10 and 1 digits: 1 to end of month (28, 29, 30 or 31) For December 31, set "1231". Initial value: 101 (January 1)
1008	Set the hour and minute using the 24-hour clock. 1000 and 100 digits: 0 to 23 hours 10 and 1 digits: 0 to 59 minutes For 23:59, set "2359". Initial value: 0 (00:00)

- When the year, month, day, time and minute are set in the parameters, the inverter counts the date and time. The date and time can be checked by reading the parameters.
- Because the date and time are cleared after turning OFF the control circuit power supply, the clock function must be reset after turning ON the power supply. Use a separate power supply, such as an external 24 V power supply, for the control circuit of the simple clock function, and supply power continuously to this control circuit.

By using the real-time clock function with the FR-LU08, it is not necessary to set the time again even when the power supply is turned OFF.

• The set clock is also used for functions such as fault history.

Pr. 1018 Refer to the page on Pr.52.

Trace function

			-		
Pr.	GROUP	Name	Pr.	GROUP	Name
1020	A900	Trace operation selection	1021	A901	Trace mode selection
1022	A902	Sampling cycle	1023	A903	Number of analog channels
1024	A904	Sampling auto start	1025	A905	Trigger mode selection
1026	A906	Number of sampling before trigger	1027	A910	Analog source selection (1ch)
1028	A911	Analog source selection (2ch)	1029	A912	Analog source selection (3ch)
1030	A913	Analog source selection (4ch)	1031	A914	Analog source selection (5ch)
1032	A915	Analog source selection (6ch)	1033	A916	Analog source selection (7ch)
1034	A917	Analog source selection (8ch)	1035	A918	Analog trigger channel
1036	A919	Analog trigger operation selection	1037	A920	Analog trigger level
1038	A930	Digital source selection (1ch)	1039	A931	Digital source selection (2ch)
1040	A932	Digital source selection (3ch)	1041	A933	Digital source selection (4ch)
1042	A934	Digital source selection (5ch)	1043	A935	Digital source selection (6ch)
1044	A936	Digital source selection (7ch)	1045	A937	Digital source selection (8ch)
1046	A938	Digital trigger channel	1047	A939	Digital trigger operation selection

The operating status of the inverter can be traced and saved on a USB memory device.

Saved data can be monitored by FR Configurator2, and the status of the inverter can be analyzed.

- This function samples the status (analog monitor and digital monitor) of the inverter, traces the sampling data when a trigger (trace start condition) is generated, and saves the resulting trace data.
- Start of sampling and copying of data (Pr.1020, Pr.1024)
 Set the trace operation. The trace operation is set by one of two ways, by setting Pr.1020 Trace operation selection and by setting in the trace mode on the operation panel.

To automatically start sampling when the power supply is turned ON or at a recovery after an inverter reset, set "1" to **Pr.1024 Sampling auto start**.

Pr. 1020 setting	Setting by trace mode	Operation
0 (initial value)	<u>[]</u>	Sampling standby
1	1FCIN	Sampling start
2	25RG	Forced trigger (sampling stop)
3	BENA	Sampling stop
4	4 <u>C</u> Py	Data transmission

Turning OFF the operation panel display

Pr.	GROUP	Name
1048	E106	Display-off waiting time

Monitor indicators can be turned OFF while the operation panel (FR-DU08) is not used.

Pr. 1048 setting	Description
0 (initial value)	The display is always ON.
1 to 60 min	Set the waiting time to turn off the monitor display after the operation panel becomes idle.

Resetting USB host errors

Pr.	GROUP	Name
1049	E110	USB host reset

When a USB device is connected to the USB connector (connector A), the USB host error can be canceled without performing an inverter reset.

Pr. 1049 settin	•
0 (initial value	e) Read only
1	Resets the USB host.

Anti-sway control

Pr.	GROUP	Name	Pr.	GROUP	Name
1072	A310	DC brake judgment time for anti-sway control operation	1073	A311	Anti-sway control operation selection
1074	A312	Anti-sway control frequency	1075	A313	Anti-sway control depth
1076	A314	Anti-sway control width	1077	A315	Rope length
1078	A316	Trolley weight	1079	A317	Load weight

Swinging of crane-lifted load is suppressed on the crane running axis.

Pr.	Setting range	Description
1072	0 to 10 s	Set the waiting time to start the DC injection brake (zero speed control, servo lock) after the output frequency reaches the Pr.10 DC injection brake operation frequency or lower.
1073	0 (initial value)	Anti-sway control disabled
1073	10 to 1250 Hz	Anti-sway control enabled
	0.05 to 2 Hz	Sets the vibration frequency of the load.
1074	9999	A vibration frequency is estimated based on the Pr.1077 to Pr.1079 settings, and anti- sway control is performed.
1075	0 to 3	0 (Deep) \rightarrow 3 (Shallow)
1076	0 to 3	0 (Narrow) \rightarrow 3 (Wide)
1077	0.1 to 50 m	Set the rope length of the crane.
1078	1 to 50000 kg	Set the weight of the trolley.
1079	1 to 50000 kg	Set the weight of the load.

Emergency stop function

Pr.	GROUP	Name	Pr.	GROUP	Name
1103	F040	Deceleration time at emergency stop	1349	G264	Emergency stop operation selection

At a failure in the host controller, the motor can be decelerated to a stop using an input via an external terminal.

At turn-ON of the emergency stop signal (X92), the motor is decelerated in the deceleration time of **Pr.1103** in accordance with the torque limit set in **Pr.815**.

The droop control and the speed loop integration at the emergency stop by the Emergency stop (X92) signal can be enabled/disabled using **Pr.1349**.

Inverter-to-inverter link function (FR-A800-E)

Pr.	GROUP	Name	Pr.	GROUP	Name
1124	N681	Station number in inverter-to-inverter link	1125	N682	Number of inverters in inverter-to-inverter link system

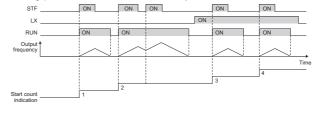
The inverter-to-inverter link function enables communication between multiple inverters connected by Ethernet in a small-scale system by using the I/O devices and special registers of the PLC function. The inverter-to-inverter link function is enabled by simply setting **Pr.1124** and **Pr.1125**.

Pr.	Setting range	Description		
1124	0 to 5	Set the station number for the inverter-to- inverter link function.		
	9999 (initial value)	Inverter-to-inverter link function disabled		
1125	2 to 6	Set the total number of inverters used for the inverter-to-inverter link function.		

· Setting procedure

- 1. Set a value other than "0" in **Pr.414 PLC function operation** selection to enable the PLC function.
- To set the inverter as the master, set "0" in **Pr.1124**, and to set 2. the inverter as a slave, select a station number from 1 to 5 and
- set the number in **Pr.1124**. Set the total number of inverters used for the inverter-toinverter link function in **Pr.1125**.
- 3. For example, set "3" in **Pr.1125** when two slave inverters and the master inverter are used.
- 4. Use FR Configurator2 to write sequence programs to the master inverter.
- Pr. 1134 to 1149Refer to the page on Pr.127.Pr. 1150 to 1199Refer to the page on Pr.414.Pr. 1221 to 1293Refer to the page on Pr.419.Pr. 1294 to 1297Refer to the page on Pr.426.Pr. 1298Refer to the page on Pr.422.Pr. 1299Refer to the page on Pr.10.

Start count monitor


Pr.	GROUP	Name	Pr.	GROUP	Name
1410	A170	Starting times lower 4 digits	1411	A171	Starting times upper 4 digits

• The inverter starting times can be counted.

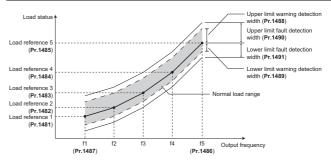
 Confirming the starting times can be used to determine the timing of the maintenance, or can be used as a reference for system inspection or parts replacement.

Pr.	Setting range	Description
1410	0 to 9999	Displays the lower four digits of the number of the inverter starting times.
1411	0 to 9999	Displays the upper four digits of the number of the inverter starting times.

 Every start signal input (the RUN signal ON) while the inverter output is stopped is counted as the inverter starting time. (Starting during pre-excitation is also counted.)

Refer to the page on Pr.82.

Load characteristics fault detection


Pr.	GROUP	Name	Pr.	GROUP	Name
1480	H520	Load characteristics measurement mode	1481	H521	Load characteristics load reference 1
1482	H522	Load characteristics load reference 2	1483	H523	Load characteristics load reference 3
1484	H524	Load characteristics load reference 4	1485	H525	Load characteristics load reference 5
1486	H526	Load characteristics maximum frequency	1487	H527	Load characteristics minimum frequency
1488	H531	Upper limit warning detection width	1489	H532	Lower limit warning detection width
1490	H533	Upper limit fault detection width	1491	H534	Lower limit fault detection width
1492	H535	Load status detection signal delay time / load reference measurement waiting time			

This function is used to monitor whether the load is operating in normal condition by storing the speed/torque relationship in the inverter to detect mechanical faults or for maintenance. When the load operating condition deviates from the normal range, the protective function is activated or the warning is output to protect the inverter or the motor.

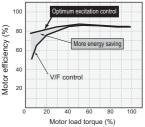
(This function is not available in the FR-A842-P.)

Pr.	Setting range	Description		
4400	0 (initial value)	Load characteristics measurement mode does not start. (Measurement of load characteristics complete without fault.)		
1480	1	Load characteristics measurement mode is started.		
	2, 3, 4, 5, 81, 82, 83, 84, 85	The load characteristics measurement status is displayed. (Read-only)		
1481		Set the reference value of normal load		
1482		characteristics.		
1483	0 to 400%	8888: The present load status is written as		
1484		reference status.		
1485		9999: The load reference is invalid.		

Pr.	Setting range	Description
1486	0 to 590 Hz	Set the maximum frequency of the load characteristics fault detection range.
1487	0 to 590 Hz	Set the minimum frequency of the load characteristics fault detection range.
1488	0 to 400%	Set the detection width when the upper limit load fault warning is output.
	9999	Function disabled
1489	0 to 400%	Set the detection width when the lower limit load fault warning is output.
	9999	Function disabled
1490	0 to 400%	Set the detection width when output is shut off when the upper limit load fault occurs.
1450	9999 (initial value)	Function disabled
1491	0 to 400%	Set the detection width when output is shut off when the lower limit load fault occurs.
1491	9999 (initial value)	Function disabled
1492	0 to 60 s	Set the waiting time after the load fault is detected until warning output or output shutoff. In the load characteristics measurement mode, set the waiting time after the load measurement frequency is reached until the load reference is set.

To perform energy-saving operation for an application such as a fan or pump

To perform energy-saving operation for an application such as a fan or pump, set the parameters as follows.


Load pattern selection (Pr.14)

Optimal output characteristics (V/F characteristics) can be selected for application or load characteristics.

- Set "1" (for variable-torque load) in **Pr.14 Load pattern selection**.
- The output voltage will change in square curve against the output frequency at the base frequency or lower.
- Set this parameter when driving a load with load torque change proportionally against the square of the rotation speed, such as a fan or pump.

100%	7	
Output voltage		b
	Pr. 3 Base fr	equend
	Output frequency	(Hz)

- Energy saving control (Pr.60) Inverter will perform energy saving control automatically even when the detailed parameter settings are made. It is appropriate for an application such as a fan or pump.
 - Set Pr.60 Energy saving control selection = "9" (Optimum excitation control mode).
 - The Optimum excitation control is a control method to decide the output voltage by controlling the excitation current so the efficiency of the motor is maximized.
 - The energy saving effect cannot be expected when the motor capacity is extremely smaller than the inverter capacity, or when multiple motors are connected to one inverter.

• The list of inverter protective functions

When the inverter detects a fault, depending on the nature of the fault, the operation panel displays an error message or warning, or a protective function is activated to trip the inverter.

	Name	Description	Operation panel indication
	Fault history	The operation panel stores the fault indications which appears when a protective function is activated to display the fault record for the past eight faults.	E
*2	Operation panel lock	Appears when operation was tried during operation panel lock.	HOLd
sage	Password locked	Appears when a password restricted parameter is read/written.	LOCa
Error message	Parameter write error	Appears when an error occurred during parameter writing.	Er 10Er4 Er8
ū	Copy operation error	Appears when an error occurred during parameter copying.	rE ltorE8
	Error	Appears when the RES signal is on or the PU and inverter can not make normal communication.	Err.
	Stall prevention (overcurrent)	Appears during overcurrent stall prevention.	OL
	Stall prevention (overvoltage)	Appears during overvoltage stall prevention. Appears while the regeneration avoidance function is activated.	oL
	Regenerative brake pre- alarm *8	Appears if the regenerative brake duty reaches or exceeds 85% of the Pr.70 Special regenerative brake duty value. If the regenerative brake duty reaches 100%, a regenerative overvoltage (E. OV[]) occurs. (Standard models only)	Rb
	Electronic thermal relay function pre-alarm	Appears when the electronic thermal O/L relay has reached 85% of the specified value.	ГН
	PU stop	Appears if STOP is pressed in an operation mode other than the PU operation mode.	ΡS
	Speed limit indication (output during speed limit)	Appears if the speed limit level is exceeded during torque control.	51
*3	Continuous operation during communication fault	Appears when the operation continues while an error is occurring in the communication line or communication option (when Pr.502 = "4").	EF
Warning	Parameter copy	Appears when parameter copy is performed between inverters FR-A820-03160(55K) or lower, FR-A840-01800(55K) or lower, FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher	EP
Warr	Safety stop	Appears when safety stop function is activated (during output shutoff).	58
	Maintenance signal output 1 to 3 *8	Appears when the inverter's cumulative energization time reaches or exceeds the parameter set value.	
	USB host error	Appears when an excessive current flows into the USB A connector.	UF
	Home position return error	Appears when an error occurs during the home position return operation under position control. (HP3 is not available on the FR-A842-P.)	HP t₀HP∃
	24 V external power supply operation	Blinks when the main circuit power supply is off and the 24 V external power supply is being input.	EĽ
	Load fault warning *8	Appears when the load is deviated from the upper or lower limit of the warning detection range. (This function is not available in the FR-A842-P.)	LdF
	Ethernet communication fault	Appears when Ethernet communication is interrupted by physical factors. (This function is intended for the FR-A800-E only.)	EHR
	Duplicate IP address	Appears when a duplicate IP address is detected.(This function is intended for the FR-A800-GN only.)	dl P
	IP address fault	Appears when the rotary switches are set to "0 or 255" and the value set for IP address or subnet mask is out of range.(This function is intended for the FR-A800-GN only.)	; P
n *4	Fan alarm	Appears when the cooling fan remains stopped when operation is required or when the speed has decreased.	FN
Alarm	Internal fan alarm	Appears when the internal fan fails, or at a reference replacement time. (IP55 compatible models only)	EN2
	Overcurrent trip during acceleration	Appears when an overcurrent occurred during acceleration.	E. OC I
	Overcurrent trip during constant speed	Appears when an overcurrent occurred during constant speed operation.	E. 002
	Overcurrent trip during deceleration or stop	Appears when an overcurrent occurred during deceleration and at a stop.	E. 0C 3
	Overcurrent trip	The output from a slave inverter in parallel operation is shut off if the input current exceeds the specified level. (This function is intended for the FR-A842-P only.)	E. 067
	Regenerative overvoltage trip during acceleration	Appears when an overvoltage occurred during acceleration.	E. 01/ 1
	Regenerative overvoltage trip during constant speed	Appears when an overvoltage occurred during constant speed operation.	E. 072
lt *5	Regenerative overvoltage trip during deceleration or stop	Appears when an overvoltage occurred during deceleration and at a stop.	E. 01/ 3
Fault	Overvoltage trip	If the DC voltage at the main circuit in a slave inverter in parallel operation reaches or exceeds the specified value, the protective circuit is activated to stop the inverter output. The circuit may also be activated by a surge voltage produced in the power supply system. (This function is intended for the FR-A842-P only.)	Ε. ΟΥΓ
	Inverter overload trip (electronic thermal relay function) *1	Appears when the electronic thermal relay function for inverter element protection was activated.	Ε. ΓΗΓ
	Motor overload trip (electronic thermal relay function) *1	Appears when the electronic thermal relay function for motor protection was activated.	Е. ГНМ
	Heat sink overheat	Appears when the heat sink overheated.	E. FIN
	Instantaneous power failure	Appears when an instantaneous power failure occurred at an input power supply. (Standard models and IP55 compatible models only)	E. I PF

	Name	Description	Operation panel indication
	Undervoltage	Appears when the main circuit DC voltage became low. (Standard models and IP55 compatible models only)	Ε. ЦΙ/Γ
	Input phase loss *8	Appears if one of the three phases on the inverter input side opened. (Standard models and IP55 compatible models only)	E. ILF
	Stall prevention stop	Appears 3 s after the output frequency is reduced to the reference value by the stall prevention (torque limit) operation.	E. OLF
	Loss of synchronism detection	The inverter trips when the motor operation is not synchronized. This function is only available under PM sensorless vector control. (This function is not available in the FR-A842-P.)	E. 507
	Upper limit fault detection	Appears when the load exceeds the upper limit of the fault detection range. (This function is not available in the FR-A842-P.)	E. LUP
	Lower limit fault detection	Appears when the load falls below the lower limit of the fault detection range. (This function is not available in the FR-A842-P.)	E. LdN
	Brake transistor alarm detection	The inverter trips if an alarm occurs in the brake circuit, e.g. damaged brake transistors. In this case, the inverter must be powered off immediately. (Appears when an internal circuit fault occurred for separated converter types and IP55 compatible models. This function is not available in the FR-A842-P.)	Е. БЕ
	Output side earth (ground) fault overcurrent	Appears when an earth (ground) fault occurred on the Inverter's output side.	E. GF
	Output phase loss	Appears if one of the three phases on the inverter output side opened.	E. LF
	External thermal relay operation *6	Appears when the external thermal relay connected to terminal OH is activated.	Ε. ΟΗΓ
	PTC thermistor operation	The inverter trips if resistance of the PTC thermistor connected between terminal 2 and terminal 10 has reached the Pr.561 PTC thermistor protection level setting or higher.	E. PFE
	Option fault	Appears when torque command by the plug-in option is selected using Pr.804 and no plug-in option is mounted, or if the AC power supply is accidentally connected to terminal R/L1, S/L2, or T/L3 while Pr.30 = "2" to connect a high power factor converter, multifunction regeneration converter, or power regeneration common converter.	Е. ОРГ
	Communication option fault	Appears when a communication line error occurs in the communication option.	E. 0P It∘ E. 0P3
	Parallel operation slave 1 fault	Appears on the master inverter when a fault occurs in the slave inverter during the parallel operation.	E. PA I
	Parallel operation slave 2 fault	Appears on the master inverter even when the RS-485 terminals are incorrectly connected. (This function is intended for the FR-A842-P only.)	E. PA2
	Parameter storage device fault (control board)	Appears when operation of the element where parameters stored became abnormal.	E. PE
lt *5	PU disconnection	Appears when a communication error between the PU and inverter occurred, the communication interval exceeded the permissible time during the RS-485 communication with the PU connecter, or communication errors exceeded the number of retries during the RS-485 communication.	Ε. ΡΠΕ
Fault	Retry count excess *8	Appears when the operation was not restarted within the set number of retries. (This function is not available in the FR-A842-P.)	E. REF
	Parameter storage device fault (main circuit board)	Appears when operation of the element where parameters stored became abnormal.	E. PE2
	CPU fault	Appears during the CPU and peripheral circuit errors occurred.	EPU EPus Eus E
	Operation panel power supply short circuit/RS- 485 terminals power supply short circuit	Appears when the RS-485 terminal power supply or operation panel power supply was shorted.	Е. СГЕ
	24 VDC power fault	When the 24 VDC power output via terminal PC is shorted, or when the external 24 VDC power supplied to terminal +24 is not enough, this function shuts off the power output.	E. P24
	Abnormal output current detection *8	Appears when the output current is out of the output current detection range set by parameters.	E. C.J.O
	Inrush current limit circuit fault	Appears when the resistor of the inrush current limit circuit overheated. (Standard models and IP55 compatible models only)	E. I DH
	Communication fault (inverter)	Appears when a communication error occurred during the RS-485 communication with the RS-485 terminals. (This function is not intended for the FR-A800-E.)	E. SER
	Analog input fault	Appears when 30 mA or more is input or a voltage (7.5 V or more) is input with terminal 2/4 set to current input.	E. ALE
	USB communication fault	Appears when USB communication error occurred.	E. USb
	Safety circuit fault	The inverter trips when a safety circuit fault occurs.	E. SAF
	Overspeed occurrence *8	Indicates that the motor speed has exceeded the overspeed setting level (Pr.374).	E. 05
	Speed deviation excess detection *7 *8	Stops the inverter output if the motor speed is increased or decreased under the influence of the load etc. during vector control and cannot be controlled in accordance with the speed command value.	E. 05d
	Signal loss detection *7 *8	Stops the inverter output if the encoder signal is shut off.	Е. ЕСГ
	Excessive position fault *8	Indicates that the difference between the position command and position feedback exceeded the reference.	E. Od
	Brake sequence fault *8	The inverter output is stopped when a sequence error occurs during use of the brake sequence function (Pr.278 to Pr.285).	E. Mb 1to E. Mb 7
	Encoder phase fault *7 *8	When the rotation command of the inverter differs from the actual motor rotation direction detected from the encoder, the inverter output is stopped. (detected only during tuning is performed in the "rotation mode" of offline auto tuning) (This function is not available in the FR-A842-P.)	E. EP

Name		Description	Opera inc	ation panel dication
Fault *5	Magnetic pole position unknown *7	When the offset value between the motor home magnetic pole position and the resolver home position is unknown, the protective circuit is activated to stop the inverter output. (This function is not available in the FR-A842-P.)	E.	MP
	External fault during output operation	When the X32 signal turns OFF (the contact opens) due to an external fault or other factor, the inverter output is shut off.	Ε.	EF
	Abnormal internal temperature	The inverter output is stopped when the internal temperature of the inverter rises abnormally. (IP55 compatible models only)	E.	I AH
	4 mA input fault *8	The inverter trips when the analog input current is 2 mA or less for the time set in Pr.778 4 mA input check filter.	E.	LEI
	Pre-charge fault *8	The inverter trips when the pre-charge time exceeds Pr.764 Pre-charge time limit . The inverter trips when the measured value exceeds Pr.763 Pre-charge upper detection level during pre-charging.	E.	PEH
	PID signal fault * 8	The inverter trips if the measured value exceeds the PID upper limit or PID lower limit parameter setting, or the absolute deviation value exceeds the PID deviation parameter setting during PID control.	E.	PI d
	Option fault	The inverter trips when a contact fault is found between the inverter and the plug-in option, or when the communication option is not connected to the connector 1.	E. E.	to
	Ethernet communication fault	If Ethernet communication is interrupted by physical factors or a no-communication state persists for the permissible time or longer, the inverter trips. (This function is intended for the FR-A800-E only.)	E.	EHR
	Opposite rotation deceleration fault *8	The speed may not decelerate during low speed operation if the rotation direction of the speed command and the estimated speed differ when the rotation is changing from forward to reverse or from reverse to forward under real sensorless vector control. At this time, the inverter output is stopped if the rotation direction will not change, causing overload.	E.	
	Internal circuit fault	Appears when an internal circuit error occurred.	<u>E.</u> E.	<u>РЪГ</u> 13
	User definition error by the PLC function	Appears when the values 16 to 20 are set in the device SD1214 with the program operation of the PLC function.	E. E.	16 to 20

Resetting the inverter initializes the internal cumulative heat value of the electronic thermal O/L relay function. The error message shows an operational error. The inverter output is not shut off. Warnings are messages given before faults occur. The inverter output is not shut off.

*1 *2 *3 *4 *5 *6 *7 Alarm warn the operator of failures with output signals. The inverter output is not shut off. When faults occur, the protective functions are activated to shut off the inverter output and output the alarms. The external thermal operates only when the OH signal is set in **Pr.178 to Pr.189 (input terminal function selection)**. Appears when a vector control compatible option is installed. (The protective function may or may not be available depending on the type of the connected

communication option.) This protective function is not available in the initial status. *8

The list of converter unit protective functions

When the converter unit detects a fault, depending on the nature of the fault, the operation panel displays an error message or warning, or a protective function is activated to trip the inverter.

	Name	Description	Operation panel indication
	Fault history	The operation panel stores the fault indications which appears when a protective function is activated to display the fault record for the past eight faults.	E
e *2	Operation panel lock	Appears when operation was tried during operation panel lock.	HOLd
ssag	Password locked	Appears when a password restricted parameter is read/written.	LOCA
Error message	Parameter write error	Appears when an error occurred during parameter writing.	Er I
	Copy operation error	Appears when an error occurred during parameter copying.	
	Error	Appears when the RES signal is on or the PU and converter unit can not make normal communication.	Err.
*3	Electronic thermal relay function pre-alarm	Appears when the electronic thermal O/L relay has reached 85% of the specified value.	ГН
Warning	Maintenance signal output 1 to 3 *7	Appears when the converter unit's cumulative energization time reaches or exceeds the parameter set value.	MF 1 to MF 3
Wa	24 V external power supply operation	Blinks when the main circuit power supply is off and the 24 V external power supply is being input.	EV
Alarm *4	Fan alarm	Appears when the cooling fan remains stopped when operation is required or when the speed has decreased.	FN
	Overvoltage trip	Appears when the converter unit's internal main circuit DC voltage exceeds the specified value.	E. 01/F
	Converter overload trip (electronic thermal relay function) *1	Appears when the electronic thermal O/L relay of the converter unit diode module is activated.	Е. ГНС
	Heat sink overheat	Appears when the heat sink overheated.	E. FIN
	Instantaneous power failure	Appears when an instantaneous power failure occurred at an input power supply.	E. I PF
	Undervoltage	Appears when power supply voltage of the converter unit is set at a low level.	E. LIVT
	Input phase loss *7	Appears if one of the three phases on the converter unit input side opened.	E. ILF
	External thermal relay operation *6	Appears when the external thermal relay connected to terminal OH is activated.	E. OHF
	Parallel operation slave 1 fault	Appears on the operation panel of the master at an occurrence of a slave converter fault during the parallel operation. Appears on the master converter unit even when the RS-485 terminals are	E. PA I
	Parallel operation slave 2 fault	incorrectly connected. (This function is intended for the FR-CC2-P only.)	E. PA2
	Parameter storage device fault (control board)	Appears when operation of the element where parameters stored became abnormal. (control board)	E. PE
\$*	PU disconnection	Appears when a communication error between the PU and inverter occurred, the communication interval exceeded the permissible time during the RS-485 communication with the PU connecter, or communication errors exceeded the number of retries during the RS-485 communication.	E. PUE
Fault	Retry count excess *7	Appears when the operation was not restarted within the set number of retries. (This function is not available for the FR-CC2-P.)	E. REF
	Parameter storage device fault (main circuit board)	Appears when operation of the element where parameters stored became abnormal. (main circuit board)	E. PEZ
	CPU fault	Appears during the CPU and peripheral circuit errors occurred.	E. CPU E. 5° E. 7
	Operation panel power supply short circuit/RS- 485 terminals power supply short circuit	Appears when the RS-485 terminal power supply or operation panel power supply was shorted.	Е. СГЕ
	24 VDC power fault	When the 24 VDC power output via terminal PC is shorted, or when the external 24 VDC power supplied to terminal +24 is not enough, this function shuts off the power output.	E. <i>P2</i> 4
	Inrush current limit circuit fault	Appears when the resistor of the inrush current limit circuit overheated.	E. I OH
	Communication fault (inverter)	Appears when a communication error occurred during the RS-485 communication with the RS-485 terminals.	E. SER
	Internal circuit fault	Appears when an internal circuit error occurred.	<u>E. P6F</u> E. 13
	Option fault	The inverter trips if a plug-in option is disconnected while the converter unit power is ON.	E. 1

Resetting the converter unit initializes the internal cumulative heat value of the electronic thermal O/L relay function. The error message shows an operational error. The inverter output is not shut off. Warnings are messages given before faults occur. The inverter output is not shut off. *1 *2 *3 *4 *5

Alarm warn the operator of failures with output signals. The inverter output is not shut off. When faults occur, the protective functions are activated to shut off the inverter output and output the alarms. The external thermal operates only when the OH signal is set in **Pr.178**, **Pr.180**, **Pr.187** or **Pr.189** (input terminal function selection). *6 *7

This protective function is not available in the initial status.

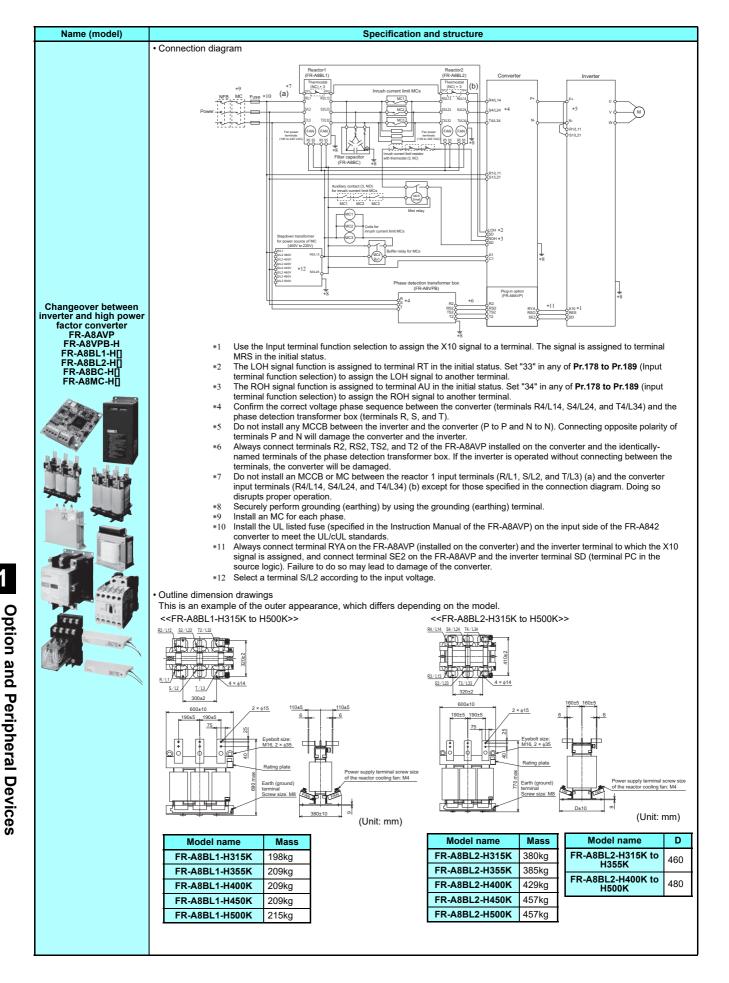
• Option List

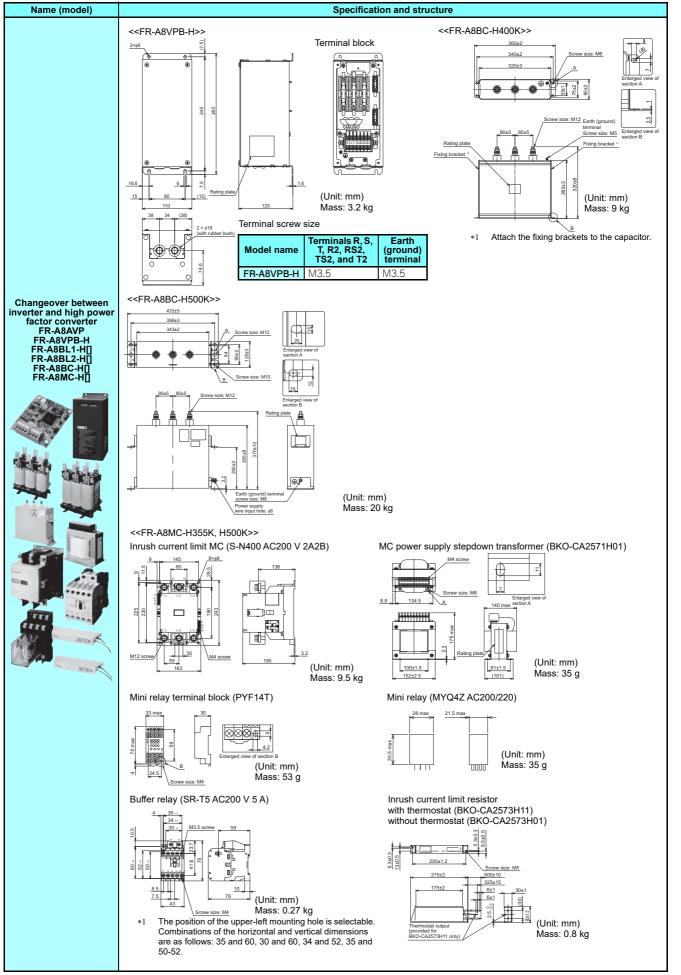
By fitting the following options to the inverter, the inverter is provided with more functions. Three plug-in options can be fitted at a time. Two or more of the same options cannot be fitted, and only one communication option can be fitted at a time. (Two options (except for communication options) can be fitted to the FR-A800-GF at a time.)

		Name	Туре	Applications, Specifications, etc.	Applicable Inverter
			FR-A8AP	Vector control can be performed for encoder-equipped motors	
		Vector control	FR-A8AL FR-A8APR*1 FR-A8APS*1 FR-A8APA*1	(induction motors). Vector control can be performed for encoder-equipped motors (induction/PM motors).	
	E	Orientation control Encoder feedback control	FR-A8AP FR-A8APR*1 FR-A8APS*1 FR-A8APA*1 FR-A8AL	The main spindle can be stopped at a specified position (orientation) in combination with an encoder. The motor speed is sent back and the speed is maintained constant.	
		Position control	FR-A8AL	The external pulse train input enables position control. Connection with the positioning module of a programmable controller is also available.	
			FR-A8APS*1	Position control using point tables is enabled.	
	Enc	coder pulse dividing output	FR-A8AL FR-A8APD*1	The encoder pulse can be divided for the signal output.	
		16-bit digital input	FR-A8AX	This input interface sets the high frequency accuracy of the inverter using an external BCD or binary digital signal. • BCD code 3 digits / 4 digits • Binary 12 bits / 16 bits	Shared among all models
				Output signals provided with the inverter as standard are selected to output from the open collector.	
	i	Digital output Extension analog output	FR-A8AY	This option adds 2 different signals that can be monitored such as the output frequency and output voltage. 20mADC or 10VDC meter can be connected.	
		Relay output	FR-A8AR	Output any three output signals available with the inverter as standard from the relay contact terminals.	
Plug-in Type		Bipolar analog output gh resolution analog input otor thermistor interface *2	FR-A8AZ	This option adds different signals that can be monitored such as the motor torque and torque command by the ± 10 V output. Highly accurate operation is achieved by using high-resolution analog input (16 bits). Thermistor-equipped motors can detect the motor temperature, and the temperature feedback is used to reduce the fluctuation of output torque.	
	Ch	angeover between inverter and high power factor converter	FR-A8AVP		
		Dedicated filter capacitor	FR-A8BC	The inverter can be set to be used as a high power factor	
		Dedicated filter reactor Dedicated reactor for PWM	FR-A8BL1	converter. The high power factor converter switches the	Separated converter types
		control	FR-A8BL2	converter section ON/OFF to reshape an input current waveform into a sine wave, greatly suppressing harmonics.	copulated converter types
		Dedicated circuit parts for inrush current protection	FR-A8MC		
		Phase detection transformer box	FR-A8VPB		
	Ph	nase-synchronized bypass switching	FR-A8AVP	This option allows smooth switching of the motor power supply	400 V class
		Phase detection transformer box	FR-A8VPB	from the inverter output power to the commercial power.	
		CC-Link IE TSN communication	FR-A8NCG*1		
	Co	CC-Link IE Field Network communication	FR-A8NCE		
	m m	CC-Link communication	FR-A8NC	This option allows the inverter to be operated or monitored or	
	un ica	SSCNET III(/H) communication	FR-A8NS	the parameter setting to be changed from a computer or programmable controller.	Shared among all models
	tio n	DeviceNet communication	FR-A8ND	4	
		PROFIBUS-DP communication	FR-A8NP		
		FL remote communication	FR-A8NF		
inal		Screw terminal block	FR-A8TR	The screw type control circuit terminal block enables wiring using round crimping terminals.	Shared among all models *3
Control terminal	Ve	ctor control terminal block	FR-A8TP	The control circuit terminal block equipped with the encoder power supply (24 VDC output) enables orientation control, encoder feedback control, vector control, encoder pulse division output with encoder-equipped motors (induction motors). (The 24 VDC power supply can be used for the encoder of the SF- V5RU.)	Shared among all models

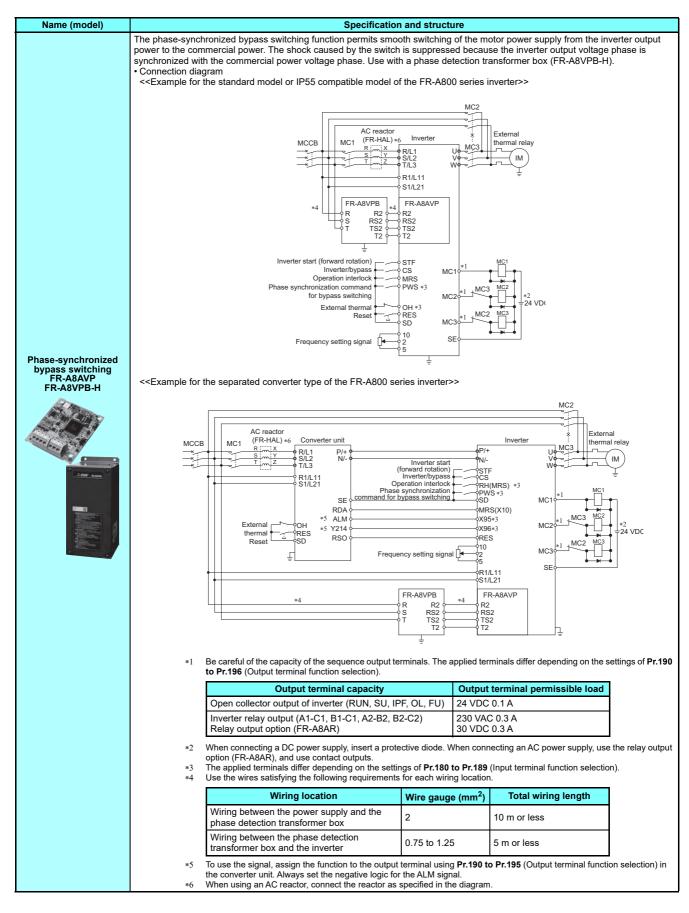
	Name		Туре	Applications, Specifications, etc.	Applicable Inverter
	Liquid crystal operation p		FR-LU08(-01)	Graphical operation panel with liquid crystal display *5	
	Parameter		FR-PU07	Interactive parameter unit with LCD display	
	Parameter unit w pack		FR-PU07BB(-L) *6	Enables parameter setting without supplying power to the inverter.	
	Parameter unit c cable	onnection	FR-CB20[]	Cable for connection of operation panel or parameter unit [] indicates a cable length. (1m, 3m, 5m)	
	USB cab	le	MR-J3USBCBL3M Cable length: 3 m	Amplifier connector Connector Connector Mini B connector (5-pin) A connector	Shared among all models
	Operation panel o connecte	connection or	FR-ADP	Connector to connect the operation panel (FR-DU08) and connection cable	
	Encoder ca Mitsubishi Elect control dedicated V5RU)	ric vector motor (SF-	FR-V7CBL[]	Connection cable for the inverter and encoder for Mitsubishi Electric vector control dedicated motor (SF-V5RU). [] indicates a cable length. (5m, 15m, 30m)	
	Control circuit terr intercompatibility		FR-A8TAT	An attachment for installing the control circuit terminal block of the FR-A700/A500 series to that of the FR-A800 series	
	Panel through at	tachment	FR-A8CN	The heat sink of the inverter can be protruded outside the enclosure. For the enclosure cut dimensions, refer to page 49 .	FR-A820-00105(1.5K) to FR-A820-04750(90K) FR-A840-00023(0.4K) to FR-A840-03610(132K) According to capacities
	Intercompatibility	attachment	FR-AAT FR-A5AT	Attachment for replacing with the A800 series using the installation holes of the FR-A700/A500/A200E series.	
	AC react		FR-HAL	For harmonic current reduction and inverter input power factor	According to capacities
ø	DC react	-	FR-HEL	improvement This option is used when the cable length from an inverter to the	FR-A842-P.
typ	Balance rea	ictor	FR-POL	node point is less than 10 m.	According to capacities.
lone	Line noise	filter	FR-BSF01 FR- BLF	For line noise reduction	Shared among all models
Stand-alone type	High-duty brake	e resistor	FR-ABR	The regenerative braking capability can be improved (permissible duty 10%/6%ED).	FR-A820-01250(22K) or lower, FR-A840-00620(22K) or lower *4
ŝ	Brake ur	nit	FR-BU2		According to capacities
			FR-BR	For increasing the braking capability of the inverter (for high- inertia load or negative load)	FR-A820-03160(55K) or lower, FR-A840-01800(55K) or lower *4
	Resisto	r unit	MT-BR5	Brake unit and resistor unit are used in combination	FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher *4
	Multifunction reg converte Dedicated stand-al Dedicated box-ty	er one reactor	FR-XC FR-XCL FR-XCB	One inverter can handle harmonic suppression and power regeneration. Functions that match the application can be selected by combining the inverter/converter with the dedicated reactor FR- XCB (box-type) or FR-XCL.	According to capacities
	Power regeneratio converte Stand-alone reacto for the FR	er or dedicated	FR-CV/ FR-CVL	Unit which can return motor-generated braking energy back to the power supply in common converter system	FR-A820-03160(55K) or lower, FR-A840-01800(55K) or lower *4
	Power regeneratio	n converter	MT- RC	Energy saving type high performance brake unit which can regenerate the braking energy generated by the motor to the power supply.	FR-A840-02160(75K) or higher *4
	High power factor	r converter	FR-HC2	The high power factor converter switches the converter section on/off to reshape an input current waveform into a sine wave, greatly suppressing harmonics. (Used in combination with the standard accessory.)	According to capacities
	0		FR-ASF		FR-A840-01800(55K) or lower *4
	Surge voltage su filter	ppression	FR-BMF	Filter for suppressing surge voltage on motor	FR-A840-00170(5.5K) to FR-A840-00930(37K) *4 According to capacities
	Sine wave filter	Reactor	MT- BSL (-HC)	Reduce the motor noise during inverter driving	FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher
		Capacitor	MT- BSC	Use in combination with a reactor and a capacitor	*4 According to capacities
	Pilot gener	ator	QVAH-10	For tracking operation. 70V/35VAC 500Hz (at 2500r/min)	
	Deviation se	ensor	YVGC-500W-NS	For continuous speed control operation (mechanical deviation detection) Output 90VAC/90°	
Others	Analog frequen (64mm × 60		YM-206NRI 1mA	Dedicated frequency meter (graduated to 130Hz). Moving-coil type DC ammeter	Shared among all models
0	Calibration re	esistor	RV24YN 10k Ω	For frequency meter calibration. Carbon film type B characteristic	
	FR Configur Inverter setup (SW1DND-FRC2-E	Supports an inverter startup to maintenance.	
-		bla for the CD			

Not available for the FR-A842-P. The motor thermistor interface is not available when the FR-A842-P is used.

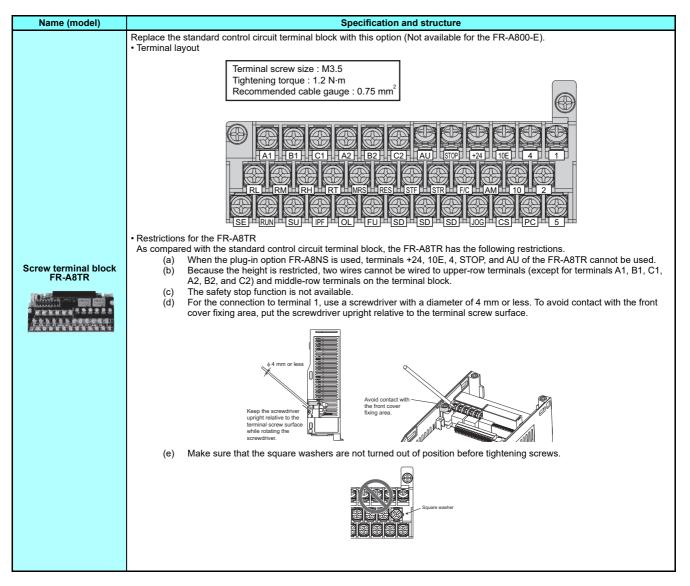

Not available for the FR-A800-E.

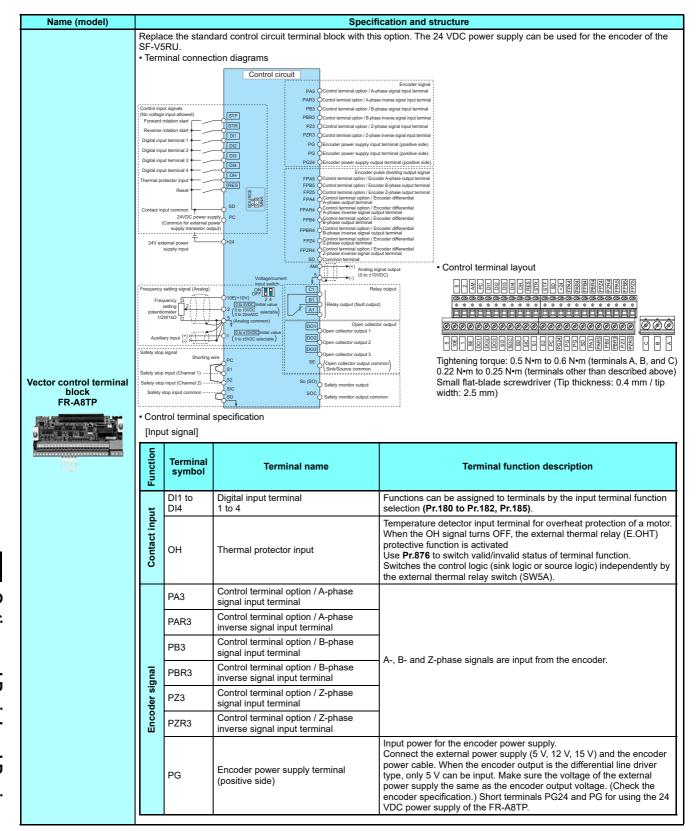

*1 *2 *3 *4 *5 *6

Applicable inverters for the ND rating. For the SLD, LD, and HD ratings, different inverters are used depending on the applicable motor capacity. The battery (CR1216: a diameter of 12 mm, a hight of 16 mm) is not bundled. To use a parameter unit with battery pack (FR-PU07BB) outside Japan, order a "FR-PU07BB-L" (parameter unit type indicated on the package has L at the end). Since batteries may conflict with laws in countries to be used (new EU Directive on batteries and accumulators, etc.), batteries are not enclosed with an FR-PU07BB.

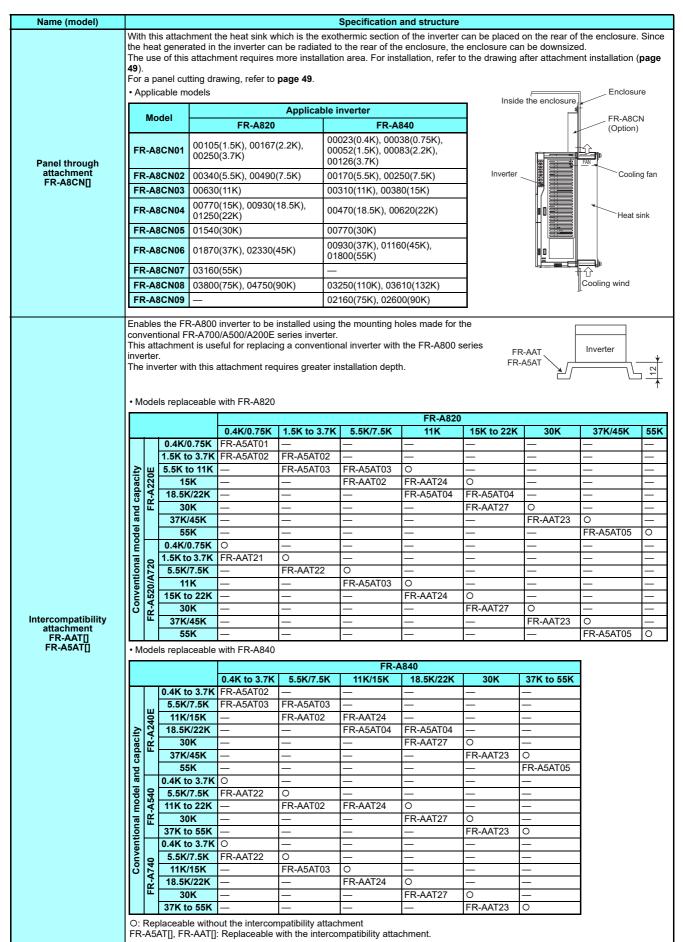

• Changeover between inverter and high power factor converter

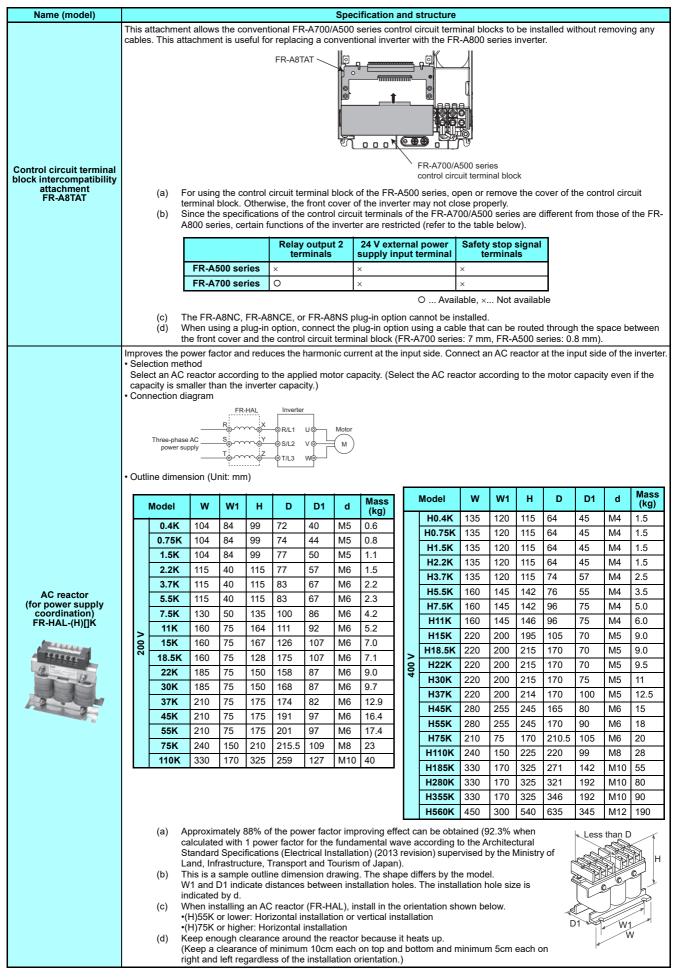
Name (model)					S	pecifica	tion and	structu	ire		
	following optic PWM control,	ons are need dedicated fi	ded to use ilter capaci	the cor	nverter: ph	hase de	ection trar	nsforme	the FR-A8AVF er box, dedicate erter can be cha	ed filter reacto	ng its parameters. The r, dedicated reactor for an inverter.
	Option lineu										
	Peripheral FR-A8VF		omponent			dataatia	Name	marha			
	FR-A8BL		-A8VPB-H -A8BL1-H				n transfor	ner bo	x		
	FR-A8BL		-A8BL2-H				tor for PW	/M cont	trol		
	FR-A8BC		-A8BC-H[]				capacitor				
	Peripheral		Componer		_		· ·		Name		
	renprierar		oomponer	in mou		dicated	circuit part	s for ini	rush current pro	otection	
		BK	(O-CA2573	3H01			<u> </u>		without thermos		
		BK	(O-CA2573	3H11	Inru	ush curr	ent limit re	sistor (with thermostat	:)	
		BK	(O-CA2571	1H01	Ste	pdown	ransforme	r for po	wer source of	magnetic cont	actor (400 to 220 V)
	FR-A8M0		N400 AC20					agnetic	contactor		
hangeover between verter and high power			R-T5 AC200			fer relay					
factor converter FR-A8AVP			YQ4Z AC20 /F14T	00/220		i relay	erminal blo	ock.			
FR-A8VPB-H			/C-A1			i relay t		JCK			
FR-A8BL1-H[] FR-A8BL2-H[]	Combination		0711								
FR-A8BC-H[] FR-A8MC-H[]	Capacity required	Converte	Pha detec opti	tion	Phase detection transform box	on L	edicated filter reactor		cated reactor PWM control	Dedicated filter capacitor	Dedicated circuit parts for inrush current protection
	315kW	FR-A842- 315K					R-A8BL1- 315K	FR-A	8BL2-H315K		FR-A8MC-H355K
	355kW	FR-A842- 355K				Н	R-A8BL1- 355K	FR-A	8BL2-H355K	FR-A8BC- H400K	
	400kW	FR-A842- 400K FR-A842-	FR-A8	BAVP	FR-A8VP	' ^{в-н} Н	R-A8BL1- 400K R-A8BL1-		8BL2-H400K		-
	450kW 500kW	450K FR-A842-				H F	450K R-A8BL1-		8BL2-H450K 8BL2-H500K	FR-A8BC- H500K	FR-A8MC-H500K
	Converter ra	500K ated specifica	ations			Н	500K				
			07700	0866	0 09620	1094) 12120	*1			input voltage is 400 VA
AND	Model F	R-A842-[]	315K	355	K 400K	450	500K	*2		s are not suppo epdown transfo	rted. rmer tap according to th
Part of the second		le inverter	315	355	400	450	500	*3	input voltage.	tage is approx	594 VDC at an input
8887 Banno		ity (kW)	*1 375	423	476	536	595	. 5	voltage of 400	VAC, approx. 6	653 VDC at 440 VAC, a
All a south	-		Three		380 to 50			*4		DC at 500 VAC e of the overloa	ad current rating is the r
V/-	Rated vol	tage (V)*2*3	Hz*6*7								converter's rated input ow time for the
Jon a sait		urrent (A)	564	636	716	806	895		temperatures of	of the converter	and the inverter to retur
,	rat	id current ing∗4 ible power	150%	60s				*5 *6	FR-DU08: IP4 The permissib	0 (except for th le voltage imba	der 100% load. e PU connector) lance ratio is 3% or less
	su voltage f	pply fluctuation	323 to	506 V	50 Hz/60	Hz			average voltage	je between thre lines × 100)	oltage between lines - ee lines)/ average voltag
	su	ible power pply / fluctuation	±5%					*7	A840-02160(7 connecting a n	5K) and FR-F8 notor to inverte	ecting a motor to the FF 40-02160(90K) or highe rs other than those
	Input po	wer factor	0.99 o	r more	(when loa	ad ratio i	s 100%)		mentioned abo	ove, the rated v	oltage is 380 to 480 V.
		ply capacit	y 456	515	580	652	724				
	Protective	structure o he verter*5		type (IF	200)	1					
	-	g system	Forced	d air							
	Coolin										
		mass (kg)	163	163	243	243	243				



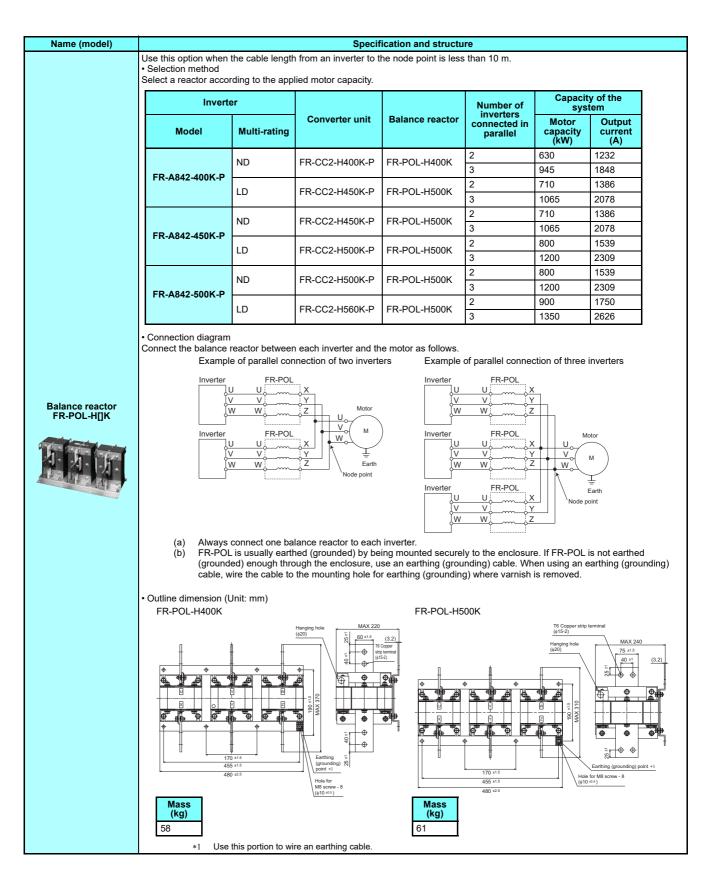


Phase-synchronized bypass switching

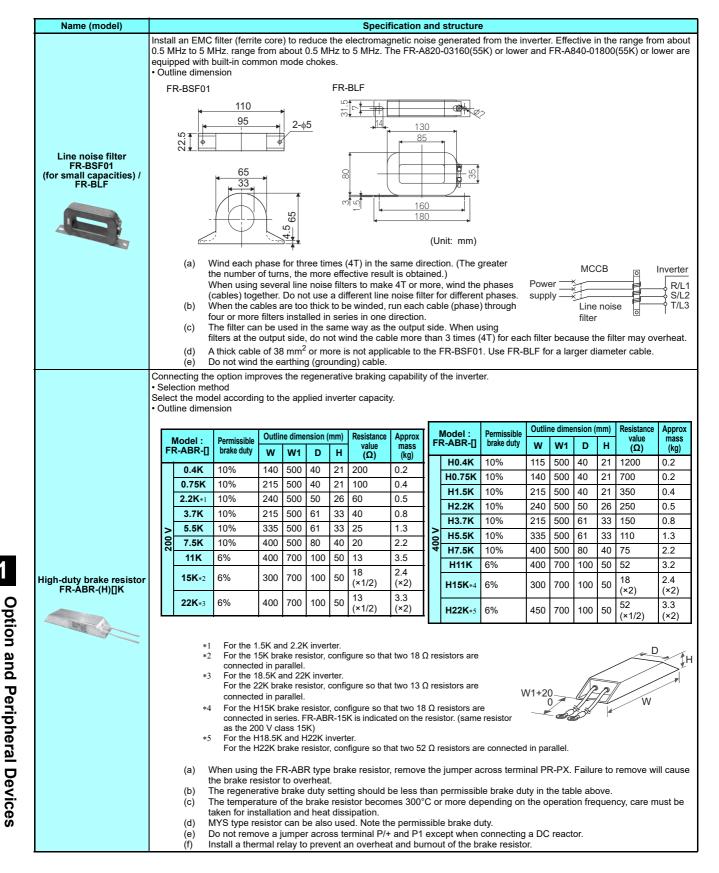

• Control terminal option


Name (model)			Speci	fication and structure
	[Out	tput signal]		
	Function	Terminal symbol	Terminal name	Terminal function description
	collector	DO1 to DO3	Digital output terminal 1 to 3	The function can be assigned to an output terminal by the output terminal function selection (Pr.190 to Pr.192).
	Open co	SE	Open collector output common	Common terminal for terminals DO1, DO2, DO3. Isolated from terminals SD and 5.
		FPA5	Control terminal option / Encoder A- phase output terminal	Outputs A-, B- and Z-phase (home position and mark pulse) signals from the encoder. The A- and B-phase signals can be divided by the
		FPB5	Control terminal option / Encoder B- phase output terminal	ratio (1/n) and output. n=1 to 32767 (an integer) Use Pr.863 Control terminal option-Encoder pulse division ratio
	put	FPZ5	Control terminal option / Encoder Z- phase output terminal	for division. Common terminal is terminal SD.
Vector control terminal block FR-A8TP	ig output	FPA4	Control terminal option / Encoder differential A-phase output terminal	
	e dividing	FPAR4	Control terminal option / Encoder differential A-phase inverse signal output terminal	
ETTORY L deverent difference	r pulse	FPB4	Control terminal option / Encoder differential B-phase output terminal	Outputs A-, B- and Z-phase (home position and mark pulse) signals from the encoder. The A- and B-phase signals can be divided by the ratio (1/n) and output.
υø	Encoder	FPBR4	Control terminal option / Encoder differential B-phase inverse signal output terminal	n=1 to 32767 (an integer) Use Pr.863 Control terminal option-Encoder pulse division ratio for division.
		FPZ4	Control terminal option / Encoder differential Z-phase output terminal	
		FPZR4	Control terminal option / Encoder differential Z-phase inverse signal output terminal	
	Power supply output for encoder	PG24	Encoder power supply terminal (positive side)	Used for the 24 VDC power supply for an encoder. If used, connect this terminal to terminal PG, and this will supply power from terminal PG to the encoder.
			the same as those of the standard cont d the output signals (A, B, C, AM, S1, S	rol circuit terminals for the input signals (STF, STR, RES, SD, PC, 10E, 2, 2, SIC, So (SO), and SOC).

Stand-alone option


11

Option and Peripheral Devices



Ι	Name (model)								Spe	cificatio	on ai	nd s	tructure							
Î			ves the po sure to ins											4840-0)2160(75K) oi	- higher	. Also i	nstall	his optio
		when i	using a m ction meth	otor of																
		Sele	ct a DC re	actor a						acity. (S	elec	t it a	ccording t	o the n	notor c	apacity	even i	f the ca	pacity	is smalle
		Conr	the invert nection dia	agram	• ·	•		,						FR-HE	L					
			nect a DC P. Remove											\square						
		P. If t	the jumpe	r is left	attach	ned, no	power	factor				e a jurr termina	iper	5 	···· 6 ···		on cable sh			
			ovement o lled for the									_		<u>}</u>		m maximun		ould be		
			R-A840-0					r and tl	ne				I	P1	P/+	N/-	1	Motor		
		inver	ter should	l be as	short	as pos	sible (5	m or le	ss).	Three-phase AC power su		—ē) R/L1) S/L2			v @-	(м		
											-	0) T/L3	Inverter		w @-		\bigcirc		
		• Outli	ne dimens	sion (U	nit: mr	n)														
			Less tha	an D					Les	ss than D					Ŧ		(9 19		
)										Withir					
					4							1							>	
			H					ł	W							Ł		D1		
			W1	V	Ð				v	/1 /1	C	01			W	W1	~	D		
			FR-HEL	0.4K to						HEL-3.7K EL-H0.75k							EL-75K to -H75K to		<i>,</i>	
			FR-F		+n						i						-1758.0	5115556	`	
			Model	w	W1	W 1	D	D1	d	Mass (kg)		I	Nodel	w	W1	W1	D	D1	d	Mass (kg)
			0.4K	70	60	71	61	-	M4	0.4			H0.4K	90	75	78	60 70	-	M5	0.6
	DC reactor		0.75K	85	74	81	61	-	M4	0.5			H0.75K H1.5K	66 66	50 50	100 100	70 80	48 54	M4 M4	0.8 1
	(for power supply coordination)		1.5K	85	74 74	81 81	70	-	M4	0.8			H2.2K	76	50	110	80	54	M4	1.3
	FR-HEL-(H)[]K		2.2K 3.7K	85 77	74 55	92	70 82	- 57	M4 M4	0.9 1.5			H3.7K	86	55	120	95	69	M4	2.3
			5.5K	77	55	92	92	67	M4	1.9			H5.5K H7.5K	96 96	60 60	128 128	100 105	75 80	M5 M5	3 3.5
	41		7.5K	86	60	113	98	72	M4	2.5			H11K	90 105	75	120	105	85	M5	4.5
		>	11K 15K	105 105	64 64	133 133	112 115	79 84	M6 M6	3.3 4.1			H15K	105	75	152	125	95	M5	5
		200	18.5K	105	64	93	165	94	M6	4.1			H18.5K	114	75	162	120	80	M5	5
			22K	105	64	93	175	104	M6	5.6			H22K H30K	133 133	90 90	178 178	120 120	75 80	M5 M5	6 6.5
11			30K	114	72	100	200	101	M6	7.8		>	H37K	133	90 90	178	120	100	M5	0.5 8.5
			37K 45K	133 133	86 86	117 117	195 205	98 108	M6 M6	10 11	-	400	H45K	133	90	187	170	110	M5	10
0			45K	153	126	132	203	122	M6	12.6			H55K	152	105	206	170	106	M6	11.5
pti			75K	150	130	190	340	310	M6	17			H75K H90K	140 150	120 130	185 190	320 340	295 310	M6 M6	16 20
on			90K	150	130	200	340	310	M6	19			H110K	150	130	190	340	310	M6	20
्य			110K	175	150	200	400	365	M8	20	l		H132K	175	150	200	405	370	M8	26
br													H160K	175	150	205	405	370	M8	28
Pe													H185K H220K	175	150 150	240	405	370	M8	29
Prip													H250K	175 190	165	240 250	405 440	370 400	M8 M8	30 35
oho													H280K	190	165	255	440	400	M8	38
era													H315K	210	185	250	495	450	M10	42
													H355K	210	185	250	495	450	M10	46
)e/			(a) Th	ne size	of the	cables	used s	hould b	e ean	al to or l	arde	er tha	an that of t	he nov	ver su	oply ca	bles (R	/1 1 5/1	2 T/I	3) (Refe
ption and Peripheral Devices			to	page	215)				·		•			·						, ,
es			fo	the fu	Indame	ental w	ave acc	ording	to the	Archite	ctura	al Sta	n be obta andard Sp	ecifica	tions (Electric				
													rt and Tou fers by the			n).				
) W	1 and	D1 ind	icate d	stance	s betwe	en in	stallatior	n hol	es.	The install	ation ł	nole siz	ze is ind	dicated	by d.		
			•(H)55K	or low	er: Hori	zontal i	nstalla	tion or	vertical			ation sho ion	windel	JW.					
			(e) Ke	ep en	oughc	learan	rizontal ce arou	nd the	reacto	r becau	se it	hea	ts up.							
), (К	eep a	cleara	nce of I	ninimu	m 10cr	n each	n on top	and	bott	om and m	inimur	n 5cm	each c	n right	and lef	ft rega	rdless of

(Keep a clearance of minimum 10cm each on top and bottom and minimum 5cm each on right and left regardless of the installation orientation.)

Option and Peripheral Devices

Name (model)								tion and								
										ke resistor.						
		raking torg		ransisto	rs. Inre	e types	of disc	narging re	esisto	rs are availa	ible. Mak	(e a sele	ection	accord	ling to the	
	Specifica		ue.													
	[Brake ur															
						200	v					400 \	v			
	Mo	odel: FR-E	3U2-[]	1.5K	2 7K			30K 55	к u	7.5K H15K					20K H280	
	Annlie									ng torque ar						
		able moto					,			<u> </u>			,			
		ected brak			71 7	,		- (bination, refe			,		-BR5*1	
	•	le (paralle	<u>, ,</u>			· .				d by the per	1					
	Appro	oximate m	nass (kg)	0.9	0.9	0.9	0.9 [·]	1.4 2.0	0.	9 0.9	1.4	2.0	2.0	13	13	
		*1 Plea	ase contact	your sale	es repre	esentativ	e to use	a brake re	esisto	r other than N	IT-BR5.					
	[Resistor	unit]														
							200	V					40	0 V 00		
	Mod	el: GRZG	type *2	GZG3	-W00	GRZG	200-	GRZG30	0-	GRZG400-	GRZG	200-	GRZ	G300-	GRZG40	
				50Ω (1	unit)	10Ω (3 ι	units)	5Ω (4 uni	its) 2	2Ω (6 units)	10Ω (3 i	units)	5Ω (4	units)	2Ω (6 unit	
	Numb	er of coni	nectable	1 unit		3 in seri		in series		in series	6 in ser		3 in se		12 in series	
		units		i unit		(1 set)	(1 set)	(*	1 set)	(2 sets)	(2 sets	5)	(2 sets)	
	Disc	harging render	esistor	50		30	2	20	1	2	60	4	40		24	
											+				ł	
		inuous op issible po		100		300	e	00	1	200	600	1	1200		2400	
				ntoine 4	o n	or cf	to in th	non-ull -		or the 1001		ata -: ·	o cu du	a d	1	
		*2	ne i set co	mains th	e numb	er of unit	is in the	parenthes	ses. F	or the 400 V o	aass, 2 s	ets are r	equire	ea.		
					200 V			400 V						200 V	400 V	
	M	odel: FR-E	3R-[]	15K	30K	55K	H15K		H55	K Moo	lel: MT-E	3R5-[]		55K	H75K	
	Disc	harging r	ocietor								arging r	ocietor	-		-	
		ned resist		8	4	2	32	16	8		ed resis			2	6.5	
Data at	Cont	inuous op	eration	000	4000	0040	000	1000	004	Contir	nuous op	oeratio	n ,		7500	
Brake unit FR-BU2-(H)[]K		issible po		990	1990	3910	990	1990	391		sible po			5500	7500	
	Appro	oximate m	ass (kg)	15	30	70	15	30	70	Approx	cimate m	nass (k	g) 7	70	65	
charging resistor GZG type	O a ma la line au															
GRZG type	Combina	tion betwe	en the bra	ke unit a	e unit and the resistor unit						model					
Destate a str			_						ng resistor model or resistor u				unit model			
Resistor unit FR-BR-(H)[]K	Bra	ake unit m	odel	GRZG type FR-BR									MT-BR5			
MT-BR5-(H)[]K				Brake and model		Model *3 Number of connectable units						FR-BR			N	II-DKJ
		FR-BU	2-1.5K	GZG 300W-50Ω (1 unit) 1 uni										-		
and the second s		FR-BU	-		G 200-10Ω (,	3 in se	ries (*	1 set)	-			-		
		FR-BU	2-7.5K	GRZG 3	00-5Ω	(4 units)	4 in se	ries (1 set)	-			-		
	200 V	FR-BU	2-15K	GRZG 4	-00-2Ω	(6 units)	6 in se	ries (1 set)	FR-BR	-15K		-		
		FR-BU	2-30K	-				-			FR-BR	-30K		-		
Contractory and the second sec		FR-BU	2-55K	-				-			FR-BR	-55K		MT-BR	5-55K	
A local division of the second		FR-BU2	2-H7.5K	GRZG 2	00-100	ն (3 unit	s)	6 in se	ries (2	2 sets)	-			-		
		FR-BU2	2-H15K	GRZG 3	00-5Ω	(4 units)	8 in se	ries (2	2 sets)	FR-BR-	-H15K		-		
		FR-BU2	2-H30K	GRZG 4	00-2Ω	(6 units)	12 in s	eries	(2 sets)	FR-BR	-H30K		-		
	400 V	FR-BU2	2-H55K	-				-			FR-BR	-H55K		-		
		FR-BU2	2-H75K	-				-			-			MT-BR	5-H75K	
		FR-BU2		-				-			-				3R5-H75K *	
		FR-BII2	-H280K	-				-			-			4×MT-I	3R5-H75K *	
												are red	uired			
			e 1 set conte	ains the r	umber	of units i	n the pa	rentheses	. For	the 400 V cla	ss. 2 sets					
		*3 The *4 The								the 400 V cla onnectable ur						
	Selection	*3 The *4 The method														
	[GRZG ty	*3 The *4 The method /pe]	e number ne	ext to the	model ı	name inc	licates t	he numbe	r of co	onnectable ur	its in para	allel.		form wi	ring and ma	
	(GRZG ty • The ma	*3 The *4 The n method /pe] aximum ter	e number ne mperature	ext to the rise of th	model i ie disch	name inc	dicates t	he numbe	r of co		its in para	allel.		form wi	ring, and ma	
	 GRZG ty The masure th 	*3 The *4 The method /pe] aximum ter at they wil	e number ne mperature I not come	ext to the rise of th in conta	model i ie disch ct with	name inc narging r resistor	dicates t resistor s.	he numbe s is about	r of co 200°	onnectable ur	its in para	allel. t wires t	o perf			
	[GRZG tyThe masure thDo not	*3 The *4 The method /pe] aximum ter at they wil	number ne mperature I not come dischargin	ext to the rise of th in conta g resisto	model i ie disch ct with	name inc narging r resistor	dicates t resistor s.	he numbe s is about	r of co 200°	onnectable ur C. Use heat-	its in para	allel. t wires t	o perf			
	[GRZG tyThe masure thDo not you masure	*3 The *4 The n method ype] aximum ten at they will touch the ay get an e	e number ne mperature I not come dischargin lectric sho	ext to the rise of th in conta g resisto	model i ie disch ct with	name inc narging r resistor	dicates t resistor s.	he numbe s is about	r of co 200° bout 2	onnectable ur C. Use heat-	its in para resistant fter the p	allel. t wires t	o perf			
	 [GRZG ty The masure th Do not you mas 	*3 The *4 The method ype] aximum ten at they will touch the	number ne mperature I not come dischargin	ext to the rise of th in conta g resisto	model i ie disch ct with	name inc narging r resistor the pow	dicates t resistor s.	he numbe s is about N or for al	r of co 200° bout 2	onnectable ur C. Use heat- 10 minutes a	its in para resistant fter the p	allel. t wires t	o perf			
	 [GRZG ty The masure th Do not you mas Power volt 	*3 The *4 The o method ype] aximum ter tat they will touch the ay get an e supply tage	e number ne mperature I not come dischargin electric sho Braking torque	rise of the in conta g resisto ck. 0.4	model i ne disch ct with r while 0.7	name inc narging r resistor the pow	dicates t resistor: s. ver is O	he numbe s is about N or for al	r of cc 200° bout 7 Mo 2.2	onnectable ur C. Use heat- 10 minutes a tor capacity 3.7	resistant fter the p 5.5	allel. t wires to power si 7.5	o perf	turns C	DFF. Otherw	
	 [GRZG ty The masure th Do not you mas Power volt 	*3 The *4 The method ype] aximum ter at they will touch the ay get an e supply tage	e number ne mperature I not come dischargin electric sho Braking torque 50% 30s	ext to the rise of th in conta g resisto ck. 0.4 FR-BL	model i te disch ct with r while 0.7 I2-1.5K	name inc narging r resistor the pow	dicates t resistor s. /er is O 1.5	he numbe s is about N or for al 2 FR:	r of cc 200° bout 1 Mo 2.2 -BU2-	C. Use heat- C. Use heat- 10 minutes a tor capacity 3.7 3.7K F	resistant fter the p 5.5 R-BU2-7	allel. t wires t power si 7.5 7.5K	o perf upply	turns C 11 R-BU2-	DFF. Otherw	
	 [GRZG ty The masure th Do not you mas Power volt 	*3 The *4 The method ype] aximum ter at they will touch the ay get an e supply tage	e number ne mperature I not come dischargin electric sho Braking torque 50% 30s 100% 30s	ext to the rise of the in conta g resisto ck.	model i ne disch ct with r while 0.7	name inc narging r resistor the pow	dicates t resistor: s. ver is O	he numbe s is about N or for al to for a S.7K FR-	r of cc 200° bout 7 <u>Mo</u> 2.2 -BU2- -BU2-	C. Use heat C. Use heat I0 minutes a tor capacity 3.7 3.7K F 7.5K F	resistant fter the p 5.5	allel. t wires t power si 7.5 7.5K	o perf upply	turns C 11 R-BU2- ×FR-BL	DFF. Otherw 15 15K J2-15K *5	
	[GRZG ty • The ma sure th • Do not you ma Power volt 20	*3 The *4 The method ype] aximum ter aximum ter aximum ter touch the y get an e supply tage 0 V	mperature I not come dischargin electric sho Braking torque 50% 30s 100% 30s 50% 30s	ext to the rise of th in conta g resisto ck. 0.4 FR-BL FR-BL -*6	model i te disch ct with r while 0.7 I2-1.5K	name inc narging r resistor the pow	dicates t resistor s. /er is O 1.5	he numbe s is about N or for al FR- B.7K FR- FR- FR-	r of cc 200° bout 7 bout 7 <u>Mo</u> 2.2 -BU2- -BU2- -BU2-	C. Use heat C. Use heat I0 minutes a tor capacity 3.7 3.7 5.7 7.5 K F H7.5 K	resistant fter the p 5.5 R-BU2-7 R-BU2-7	allel. t wires t bower si 7.5 7.5K 15K	io perf upply Fi 2: Fi	turns C 11 R-BU2- ×FR-BU R-BU2-	DFF. Otherw 15 15K J2-15K *5 H15K	
	[GRZG ty • The ma sure th • Do not you ma Power volt 20	*3 The *4 The method ype] aximum ter aximum ter aximum ter touch the y get an e supply tage 0 V	e number ne mperature I not come dischargin electric sho Braking torque 50% 30s 100% 30s	ext to the rise of th in conta g resisto ck. 0.4 FR-BL FR-BL -*6	model i te disch ct with r while 0.7 I2-1.5K	name inc narging r resistor the pow	dicates t resistor s. /er is O 1.5	he numbe s is about N or for al FR- B.7K FR- FR- FR-	r of cc 200° bout 7 bout 7 <u>Mo</u> 2.2 -BU2- -BU2- -BU2-	C. Use heat C. Use heat I0 minutes a tor capacity 3.7 3.7 5.7 7.5 K F H7.5 K	resistant fter the p 5.5 R-BU2-7	allel. t wires t bower si 7.5 7.5K 15K	io perf upply Fi 2: Fi	turns C 11 R-BU2- ×FR-BL	DFF. Otherw 15 15K J2-15K *5 H15K	
	[GRZG ty • The ma sure th • Do not you ma Power volt 200 40	*3 The *4 The method ype] aximum ter aximum ter aximum ter touch the y get an e supply tage 0 V	mperature I not come dischargin electric sho Braking torque 50% 30s 100% 30s 50% 30s	ext to the rise of th in conta g resisto ck. 0.4 FR-BL FR-BL -*6	model i te disch ct with r while 0.7 I2-1.5K	name inc narging r resistor the pow	dicates t resistor s. /er is O 1.5	he numbe s is about N or for al FR- B.7K FR- FR- FR-	r of cc 200° bout 7 Bout 7 -BU2- -BU2- -BU2- -BU2- -BU2-	C. Use heat C. Use heat I0 minutes a tor capacity 3.7 3.7 5.7 7.5 K F H7.5 K	its in para resistant fter the p 5.5 R-BU2-7 R-BU2-7	allel. t wires t bower si 7.5 7.5K 15K	io perf upply Fi 2: Fi	turns C 11 R-BU2- ×FR-BU R-BU2-	DFF. Otherw 15 15K J2-15K *5 H15K	
	[GRZG ty • The masure th • Do not you ma Power volt 200 400 Power	*3 The *4 The method ype] aximum ter tat they will touch the ay get an e supply tage 0 V 0 V	mperature I not come dischargin lectric sho Braking torque 50% 30s 100% 30s 100% 30s	ext to the rise of th in conta g resisto ck. 0.4 FR-BL FR-BL -*6	model i e disch ct with r while 0.7 J2-1.5K J2-1.5K	name inc narging r resistor the pow	dicates t resistor s. /er is O 1.5	he numbe s is about N or for al R S.7K FR- S.7K FR- FR- FR-	r of cc 200° bout 7 Bout 7 -BU2- -BU2- -BU2- -BU2- -BU2-	onnectable ur C. Use heat- 10 minutes a tor capacity 3.7 3.7K 7.5K H7.5K	its in para resistant fter the p 5.5 R-BU2-7 R-BU2-7	allel. t wires t bower si 7.5 7.5K 15K	io perf upply Fi 2: Fi	turns C 11 R-BU2- ×FR-BU R-BU2-	DFF. Otherw 15 15K J2-15K *5 H15K	
	[GRZG ty • The masure th • Do not you ma Power volt 200 400 Power	*3 The *4 The method ype] aximum ter tat they will touch the ay get an e supply tage 0 V 0 V	mperature I not come dischargin electric sho Braking torque 50% 30s 100% 30s 50% 30s 100% 30s Braking	ext to the rise of th in conta g resisto ck. 0.4 FR-BL FR-BL -*6 -*6	model i ct with r while 12-1.5K 12-1.5K	name inc narging r resistor the pow 75 5 5 5 5 5 5 5 7 5 7 5 7 5 7 5 7 5 7	dicates t resistor s. ver is O 1.5 R-BU2-3	he numbe s is about N or for al R B.7K FR- B.7K FR- FR- FR- FR- 0	r of cc 200° bout 7 bout 7 -BU2- -BU2- -BU2- -BU2- -BU2- -BU2- -BU2- -BU2-	C. Use heat- C. Use heat- 10 minutes a tor capacity 3.7 5 3.7K F 7.5K F H7.5K F H7.5K F tor capacity	its in para resistant fter the p 5.5 R-BU2-7 R-BU2-7	allel. t wires t power st 7.5 7.5K 15K H15K	io perf upply Fi 2: Fi	turns C 11 R-BU2- ×FR-BU R-BU2- R-BU2-	DFF. Otherw 15K 15K 12-15K *5 H15K H30K	
	[GRZG ty • The ma sure th • Do not you ma Power volt 200 400 Power volt	*3 The *4 The n method /pe] aximum ter at they will touch the ay get an e supply tage 0 V 0 V supply tage	mperature I not come dischargin electric sho Braking torque 50% 30s 100% 30s 50% 30s Braking torque 50% 30s	ext to the rise of th in conta g resisto ck. 0.4 FR-BL FR-BL -*6 -*6 18.5 2×FR-I	model i e disch ct with r while 12-1.5K 12-1.5K 12-1.5K	name inc narging r resistor the pow 75 75 75 75 75 75 75 75 75 75 75 75 75	dicates t resistor: s. ver is O 1.5 R-BU2-3 3	s is about N or for al FR- 3.7K FR- FR- FR- FR- FR- FR- FR- FR- SRI12	r of cc 200° bout 7 bout 7 .2 .2 .8 .2 .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 .8 .2 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8	Annectable ur C. Use heat 10 minutes a tor capacity 3.7 3.7K F.7.5K H7.5K H7.5K H7.5K For capacity 37 BU2-15K*5	itis in para resistant fter the p 5.5 R-BU2-7 R-BU2-7 R-BU2-7	allel. t wires t power su 7.5 7.5K 15K H15K 45	FF 22 FF FI	11 R-BU2- ×FR-BU R-BU2- R-BU2- R-BU2- 4×FR-E	DFF. Otherw 15K 15K 12-15K *5 H15K H30K 55 BU2-15K*5	
	[GRZG ty • The ma sure th • Do not you ma Power volt 200 400 Power volt	*3 The *4 The n method /pe] aximum ter at they will touch the ay get an e supply tage 0 V 0 V supply tage	mperature I not come dischargin lectric sho Braking torque 50% 30s 100% 30s 100% 30s Braking torque	ext to the rise of th in conta g resisto ck. 0.4 FR-BL FR-BL -*6 -*6 18.5 2×FR-I	model i e disch ct with r while 12-1.5K 12-1.5K 12-1.5K	name inc narging r resistor the pow 75 75 75 75 75 75 75 75 75 75 75 75 75	dicates t resistor s. ver is O 1.5 R-BU2-3	s is about N or for al FR- B.7K FR- FR- FR- FR- BLI2	r of cc 200° bout 7 bout 7 .2 .2 .8 .2 .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 U2- .8 .8 .2 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8	onnectable ur C. Use heat- 10 minutes a tor capacity 3.7 3.7K 7.5K H7.5K H7.5K tor capacity 37	its in para resistant fter the p 5.5 R-BU2-7 R-BU2-7	allel. t wires t power su 7.5 7.5K 15K H15K 45	FF 22 FF FI	11 R-BU2- ×FR-BU R-BU2- R-BU2- R-BU2- 4×FR-E	DFF. Otherw 15K 15K 12-15K *5 H15K H30K 55	
	[GRZG ty • The ma sure th • Do not you ma Power volt 200 400 Power vol 200 400	*3 The *4 The method ype] aximum ter at they will touch the ay get an e supply tage 0 V 0 V 0 V	mperature I not come dischargin electric sho Braking torque 50% 30s 100% 30s 50% 30s Braking torque 50% 30s	ext to the rise of th in conta g resisto ck. 0.4 FR-BL FR-BL -*6 -*6 18.5 2×FR-I	model i re disch ct with r while 12-1.5K 12-1.5K 12-1.5K 12-1.5K 12-1.5K 12-1.5K	name inc narging r resistor the pow 75 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	dicates t resistor: s. ver is O 1.5 R-BU2-3 3 4×FR-	he numbe s is about N or for al ER- B.7K FR- FR- FR- FR- FR- FR- FR- FR- FR- FR-	r of cc 200° bout 1 Bout 1 BU2- BU2- BU2- BU2- BU2- BU2- BU2- BU2-	Annectable ur C. Use heat 10 minutes a tor capacity 3.7 3.7K F.7.5K H7.5K H7.5K H7.5K For capacity 37 BU2-15K*5	its in para resistant fter the p 7 5.5 R-BU2-7	allel. t wires t power su 7.5 7.5K 15K H15K 45	FF 22 FF FI	11 R-BU2- ×FR-BU R-BU2- R-BU2- R-BU2- 4×FR-E	DFF. Otherw 15K 15K 12-15K *5 H15K H30K 55 BU2-15K*5	
	[GRZG ty • The ma sure th • Do not you ma Power volt 200 400 Power vol 200 400	*3 The *4 The method ype] aximum ter tat they will touch the ay get an e supply tage 0 V 0 V 0 V	mperature I not come dischargin lectric sho Braking torque 50% 30s 100% 30s Braking torque 50% 30s	ext to the rise of th in conta g resisto ck. 0.4 FR-BL FR-BL 7.6 18.5 2. ×FR-I 3. ×FR-I FR-BU	model i le disch ct with r while 12-1.5K 12-1.5K 12-1.5K 12-1.5K 12-1.5K 12-1.5K 12-1.5K 12-1.5K 12-1.5K 12-1.5K	name inc narging r resistor the pow 75 75 75 75 75 75 75 75 75 75 75 75 75	dicates t resistor: s. ver is O 1.5 R-BU2-3 3 4×FR-	he numbe s is about N or for al ER- 8.7K FR- FR- FR- BU2- E	r of cc 200° bout 1 bout 1 BU2- BU2- BU2- BU2- BU2- BU2- BU2- BU2-	onnectable ur C. Use heat- 10 minutes a tor capacity 3.7 3.7K F.7.5K H7.5K H7.5K H7.5K BU2-15K*5 BU2-15K*5	its in para resistant fter the p 5.5 R-BU2-1 R-BU2-1 R-BU2-1 (6×FR-E 5	allel. t wires t power su 7.5 7.5K 15K H15K 45	FF 22 FF FF	turns C 11 R-BU2- ×FR-BU R-BU2- R-BU2- R-BU2- 4×FR-E 7×FR-E	DFF. Otherw 15K 15K 12-15K *5 H15K H30K 55 BU2-15K*5	

Ine number next to the model name indicates the number of connectable units in parallel.
 FR-A840-00052(1.5K) or lower capacity inverters cannot be used with brake units. When using brake units with inverters, use the FR-A840-00083(2.2K) or higher capacity inverters.

1 Option and Peripheral Devices

			Model
			FR-BU2-15
		200 V	FR-BU2-30
			FR-BU2-55
			FR-BU2-H1
		400 V	FR-BU2-H3
			FR-BU2-H5
	Br	aking to	rque (%) at 10
			Mode
			FR-BU2-15
		200 V	FR-BU2-30
			FR-BU2-55
			FR-BU2-H1
		400 V	FR-BU2-H3
			FR-BU2-H5
Brake unit FR-BU2-(H)[]K			
Discharging resistor GZG type GRZG type			
Resistor unit FR-BR-(H)[]K MT-BR5-(H)[]K	۰È	a place s	, o select a wel uch as an eno
	۲ • ٦ ۲	ieat-sen The temp esistor u	imum tempera sitive compon perature of the init may result r unit is equip

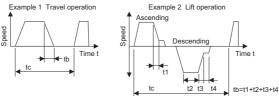
Name (model)

Specification and structure

[FR-BR] The maximum temperature rise of the resistor unit is about 100°C. Therefore, use heat-resistant wires (such as glass wires).

%ED at short-time rating when braking torque is 100%

	Model						Motor c	apacity				
	woder		5.5kW	7.5kW	11kW	15kW	18.5kW	22kW	30kW	37kW	45kW	55kW
	FR-BU2-15K		80	40	15	10	-	-	-	-	-	-
200 V	FR-BU2-30K	%ED	-	-	65	30	25	15	10	-	-	-
	FR-BU2-55K		-	-	-	-	90	60	30	20	15	10
	FR-BU2-H15K		80	40	15	10	-	-	-	-	-	-
400 V	FR-BU2-H30K	%ED	-	-	65	30	25	15	10	-	-	-
	FR-BU2-H55K		-	-	-	-	90	60	30	20	15	10


10%ED in short-time rating of 15 s

	Model						Motor ca	apacity				
	Woder		5.5kW	7.5kW	11kW	15kW	18.5kW	22kW	30kW	37kW	45kW	55kW
	FR-BU2-15K	Braking	280	200	120	100	80	70	-	-	-	-
200 V	FR-BU2-30K	torque	-	-	260	180	160	130	100	80	70	-
	FR-BU2-55K	(%)	-	-	-	-	300	250	180	150	120	100
	FR-BU2-H15K	Braking	280	200	120	100	80	70	-	-	-	-
400 V	FR-BU2-H30K	torque	-	-	260	180	160	130	100	80	70	-
	FR-BU2-H55K	(%)	-	-	-	-	300	250	180	150	120	100

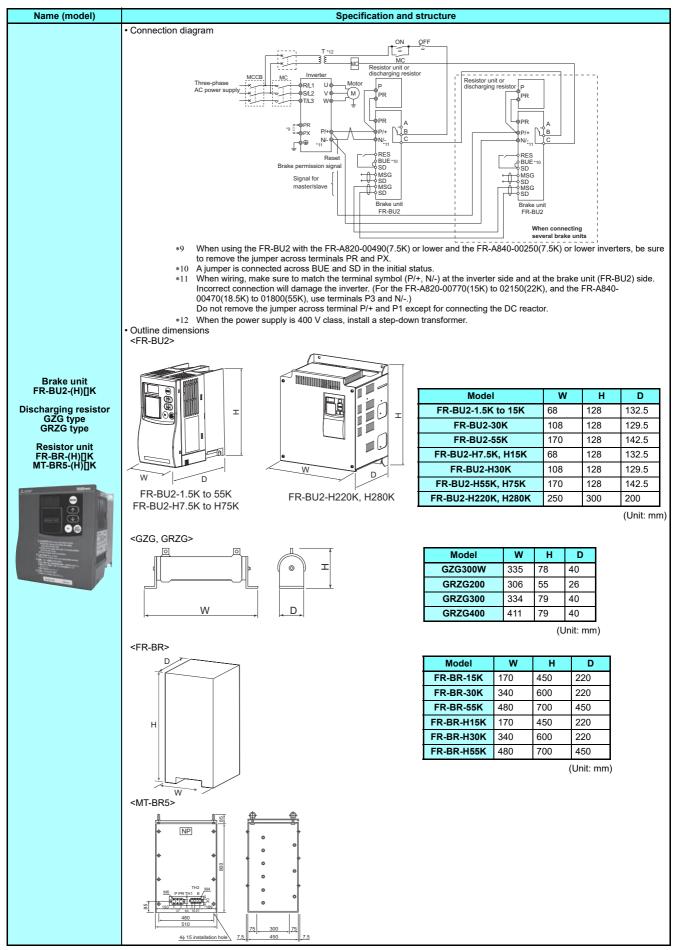
Regeneration duty factor (operation frequency)%ED = $\frac{\text{tb}}{\text{to}} \times 100$ tb<15s (continuous operation time) tc

Example 1 Travel operation

ell-ventilated place for the installation of the resistor unit. Ventilation is necessary when installing the resistor in nclosure, where heat is not well diffused.

- rature rise of the resistor unit is about 300°C. When wiring, be careful not to touch the resistor. Also, keep any nent away from the resistor (minimum 40 to 50 cm).
- e resistor unit abnormally increases if the brake unit is operated exceeding the specified duty. Since the It in overheat if the temperature of the brake unit is left unchanged, switch off the inverter.
- A resistor unit is equipped with thermostat (NO contact) for overheat protection. If this protective thermostat activates in normal operation, the deceleration time may be too short. Set the inverter's deceleration time longer.

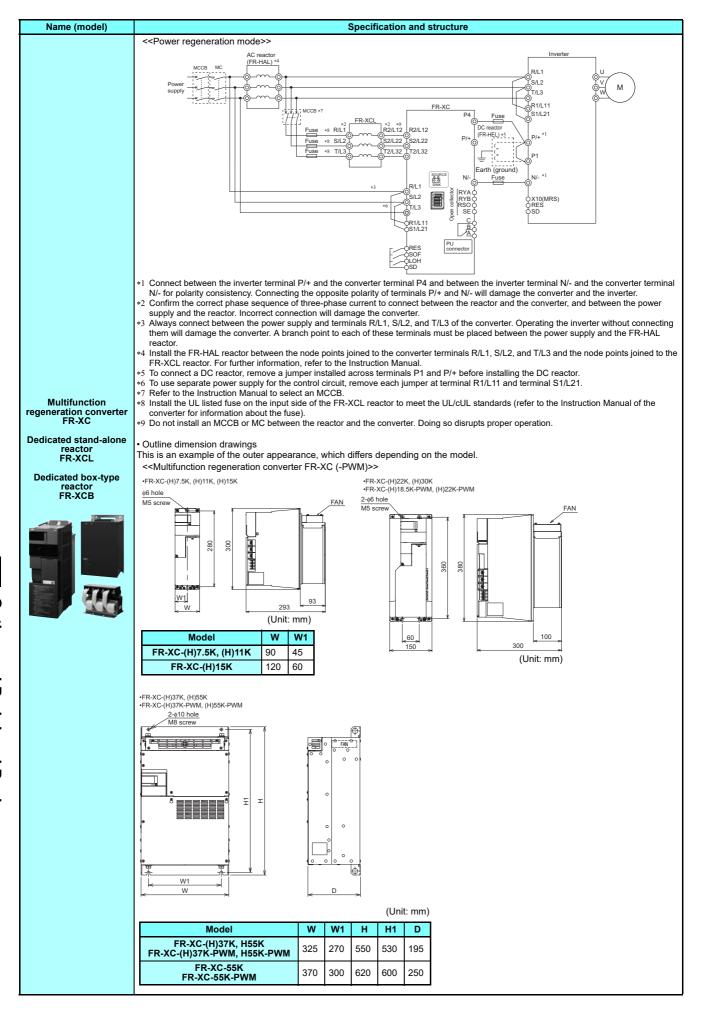
%ED at short-time rating when braking torque is 100%

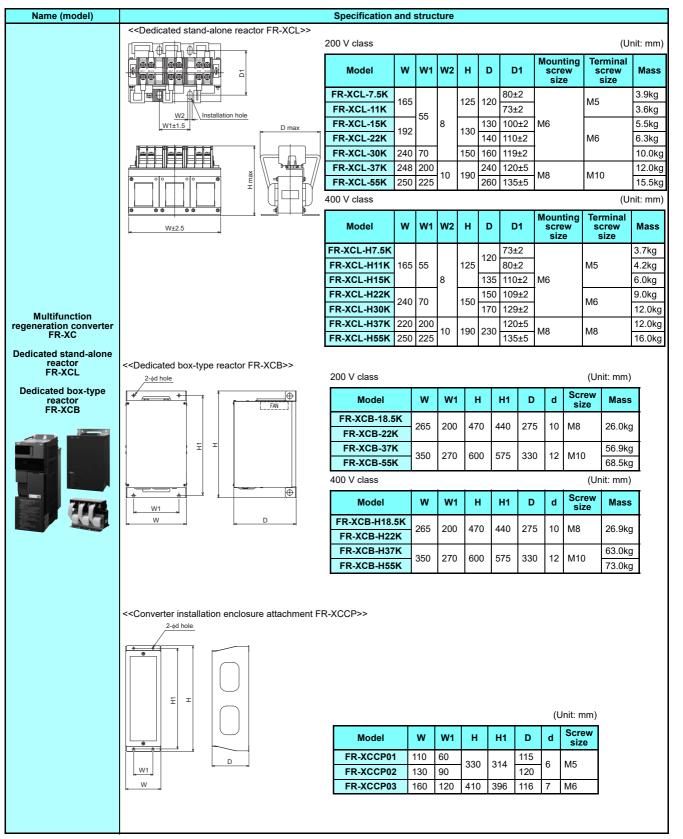

Number of								Ν	lotor o	apacit	y						
connectable units*7		75 kW	90 kW	110 kW	132 kW	160 kW	185 kW	220 kW	250 kW	280 kW	315 kW	355 kW	375 kW	400 kW	450 kW	500 kW	560 kW
200 V	1	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR-BU2-55K	2	20	15	10	-	-	-	-	-	-	-	-	-	-	-	-	-
400 V	1	10	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	40	25	20	10	5	5	-	-	-	-	-	-	-	-	-	-
400 V	1	80	60	40	25	15	10	10	5	-	-	-	-	-	-	-	-
FR-BU2-H220K	2	-	-	-	-	-	-	20	20	15	15	15	10	10	10	5	-
400 V	1	-	80	65	40	30	20	15	10	10	10	5	-	-	-	-	-
FR-BU2-H280K	2	-	-	-	-	-	-	-	-	-	20	20	15	15	15	10	10

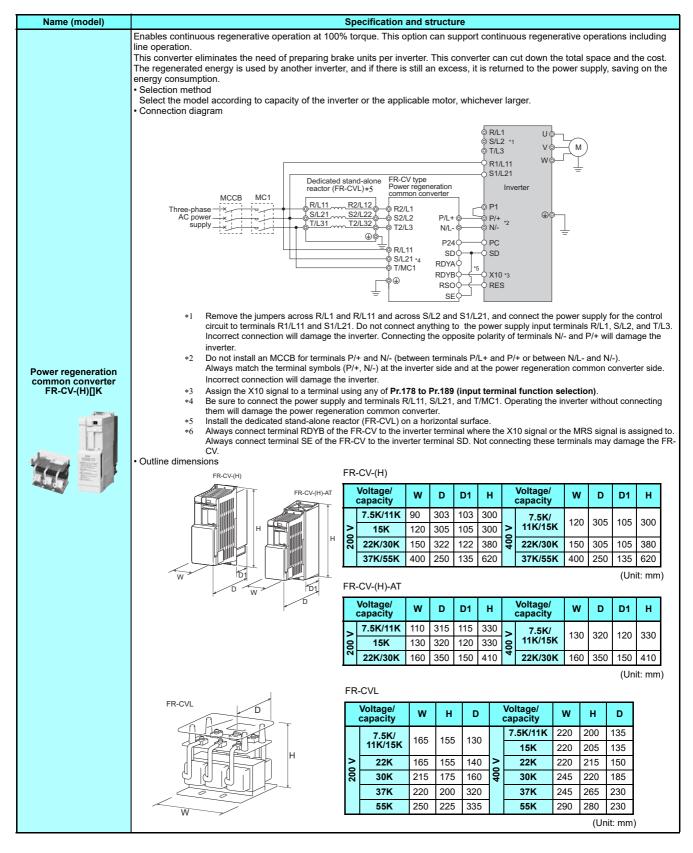
Braking torque (%) in short-time rating of 15 s

Number of								Ν	lotor c	apacit	y						
connectable units*7		75 kW	90 kW	110 kW	132 kW	160 kW	185 kW	220 kW	250 kW	280 kW	315 kW	355 kW	375 kW	400 kW	450 kW	500 kW	560 kW
200 V	1	70	60	50	-	-	-	-	-	-	-	-	-	-	-	-	-
FR-BU2-55K	2	150	120	100	-	-	-	-	-	-	-	-	-	-	-	-	-
400 V	1	100	80	70	55	45	40	35	30	25	20	20	20	-	-	-	-
FR-BU2-H75K	2	150	150	135	110	90	80	70	60	50	45	40	40	-	-	-	-
400 V	1	200	200	150	150	135	115	100	80	55	-	-	-	-	-	-	-
FR-BU2-H220K	2	-	-	-	-	-	-	190	170	150	150	140	120	110	100	90	80
400 V	1	-	-	200	200	150	150	150	125	100	70	60	-	-	-	-	-
FR-BU2-H280K	2	-	-	-	-	-	-	-	-	-	180	160	150	150	130	115	100

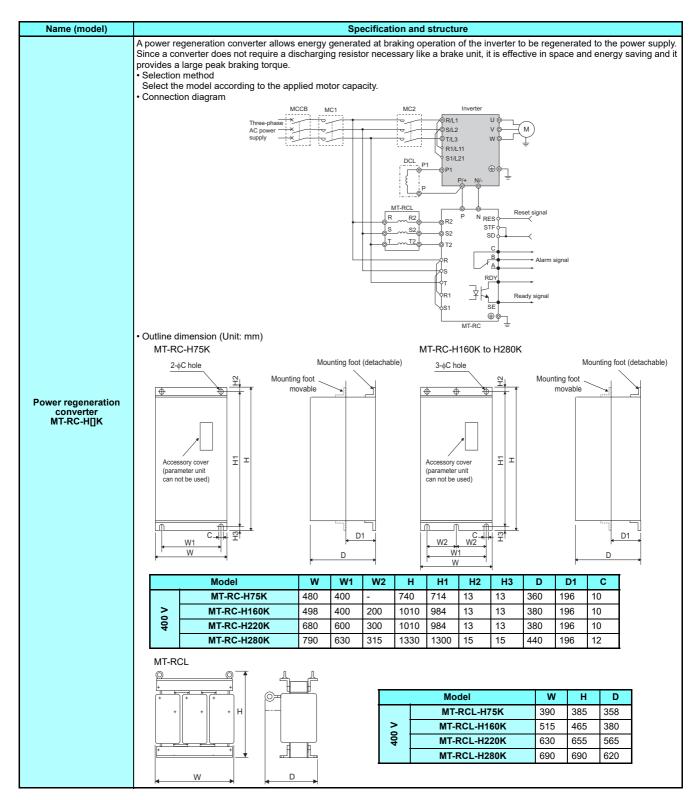
The number next to the model name indicates the number of connectable units in parallel. *7

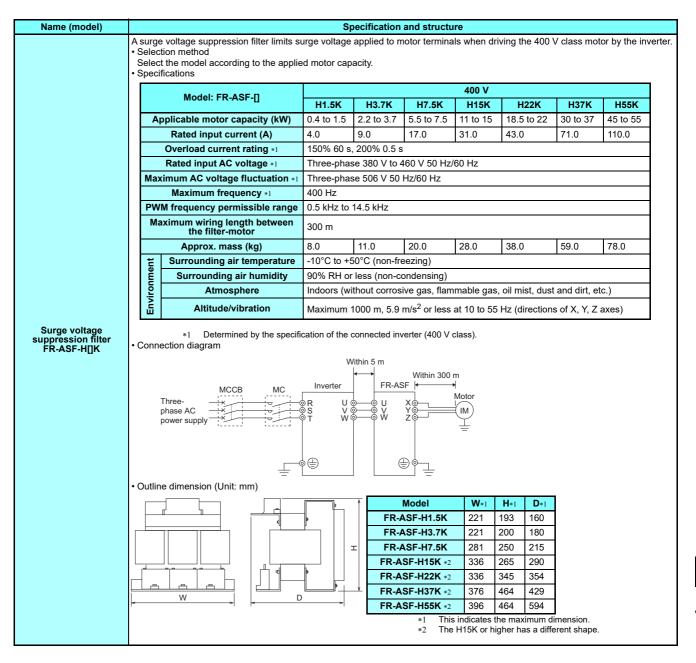

To obtain a large braking torque, the motor has to have a torque characteristic that meets the braking torque. Check the torque characteristic of the motor. *8



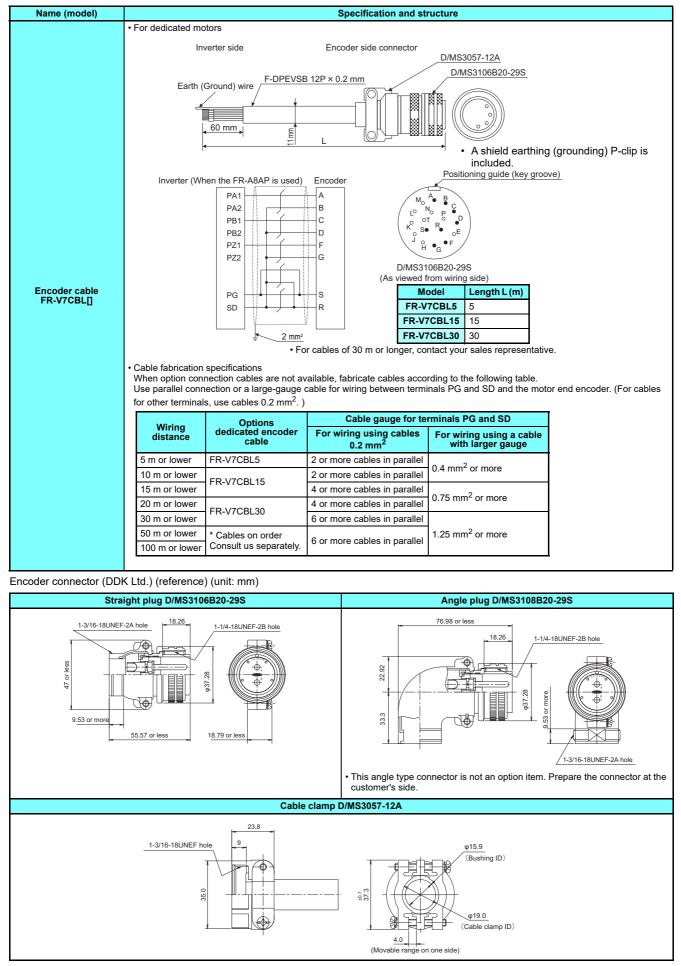

Option and Peripheral Devices

Name (model) Specification and structure One inverter can handle harmonic suppression and power regeneration. Functions that match the application can be selected by combining the inverter/converter with the dedicate (boxtype) or FR-XCL. • Combination • Combination					
Functions that match the application can be selected by combining the inverter/converter with the dedicate (boxtype) or FR-XCL.					
< <combination and="" fr-xc(-pwm)="" fr-xcl="" matrix="" of="">> </combination> <th></th> <th></th>					
Dedicated Standalone Multifunction regeneration attachment for enclosure regen	function neration overter	V V V V V V V V V V V V V V V V V V V			
	-XC-[]				
7.5K 7.5K - (H) 7.5K					
11K 11K - 01 (H) 11K		-			
15K 15K - 02 (H) 15K		-			
22K 22K 18.5K (H) 22K		-			
30K 30K 22K (H) 30K		1			
37K 37K 37K 03	-PWM	-			
55K 55K 55K (H) 22K-P		-			
H7.5K H7.5K - <pre></pre>		D/V/W/>>			
		VVIVIJ			
H15K H15K - IP20 compatible regene	eration				
H22K H22K H18.5K attachment conv					
H30K H30K H22K FR-XCCU[] FR-XC-[]] (-PWM)				
H37K H37K H37K 01					
H55K H55K H55K H55K					
<pre></pre> <pre>< 02 55K </pre>					
03 H37K					
regeneration converter converter	nonic suppression function is preen odel. To use the converter with the f				
FR-XC reactor Converter in this model. To use the "999"					
Dedicated stand-alone FR-XCB-[] FR-XC-[] *2 FR-XC-[]-PWM method selection to "0					
reactor 18.5K 22K 18.5K disabled). FR-XCL asi/ asi/ asi/ *2 The harmonic suppress	harmonic suppression function is not				
22K 30K 22K preenabled in this mode	el. To use the	converter with			
Dedicated box-type reactor 37K 37K 37K the FR-XCB, change the Control method select Control method select					
FR-XCB 55K 55K suppression enabled).					
H18.5K H22K H18.5K					
Specifications					
<200V class>>					
Model+1 FR-XC-[]K	FR-XC-[]	K-PWM			
Harmonic 7.5 11 15 22 30 37 55 1	8.5 22	37 55			
suppression					
Common Applicable Disabled 7.5 11 15 22 30 37 55 22		37 55			
bus capacity (kW) Enabled 18.5 22 37 55 18	8.5 22	37 55			
mode Overload current rating 100% continuous /150% 60 s 10	00% continue 0 s	ous /150%			
	8.5 22	30 45			
	00% continue 0 s	ous /150%			
The second	hree-phase 2 0 Hz/60 Hz	200 to 240 V			
voltage/ frequency Enabled Three-phase 200 to 230 V Th	hree-phase 2				
	0 Hz/60 Hz*4 hree-phase 1	ŧ			
		170 to 264 V			
Source Permissible AC Visabled Inree-phase 70 to 254 V 50 HZ/50 HZ 50 voltage fluctuation Enabled Three-phase 170 to 253 V Th	0 Hz/60 Hz hree-phase 1				
Power source Permissible AC voltage fluctuation Disabled Inree-phase 70 to 264 V 50 HZ/60 HZ 50 Three-phase 170 to 253 V	hree-phase 1 0 Hz/60 Hz				
Power source Permissible AC voltage fluctuation Disabled Inree-phase 70 to 264 V 50 HZ/60 HZ 50 Permissible fluctuation Enabled - - Three-phase 170 to 253 V Three-phase 170 t	hree-phase 1 0 Hz/60 Hz 5%				
Power source Permissible AC voltage fluctuation Disabled Inree-phase 70 to 264 V 50 HZ/60 HZ 50 Enabled - - - Three-phase 170 to 253 V 50 HZ/60 HZ Three-phase 170 to 253 V 50 HZ/60 HZ<	hree-phase 1 0 Hz/60 Hz 5% 5%	170 to 253 V			
Power source Permissible AC voltage fluctuation Disabled Inree-phase 70 to 264 V 50 HZ/60 HZ 50 Permissible fluctuation Enabled - - - Three-phase 170 to 253 V 50 HZ/60 Hz	hree-phase 1 0 Hz/60 Hz 5%	170 to 253 V			


Name (model)			Spe	cificati	ion and	d struc	ture							
	<<400V class>>													
		Model*1	Harmonic				-XC-H	-				-ХС-Н	ī –	
			suppression	7.5	11	15	22	30	37	55	18.5	22	37	55
	Common bus	Applicable inverter	Disabled Enabled	7.5	11	15	22 18.5	30 22	37 37	55 55	22 18.5	30 22	37 37	55 55
	regeneration mode	capacity (kW) Overload cu	irrent rating	100%	continu	- Jous /1			51	55		contin		
	Power regeneration	Potential regen (k)	erative capacity W)	5.5	7.5	11	18.5	22	30	45	18.5	22	30	45
	mode*2	Overload cu	irrent rating	100%	continu	uous /1	50% 60)s			100% 60s	contin	uous /1	150%
		Rated input AC voltage/	Disabled	Three	-phase	380 to	500 V	50 Hz/	60 Hz			-phase /60 Hz	380 to	500 V
		frequency	Enabled	-	-	-		-phase /60 Hz	380 to 3	480 V	50 Hz	/60 Hz	∗4	480 V
	Power source	Permissible AC voltage	Disabled	Three	-phase	323 to				50014	50 Hz	60 Hz		550 V
		fluctuation	Enabled	-	-	-		-pnase /60 Hz	323 to	506 V	50 Hz	-pnase /60 Hz	323 to	506 V
		Permissible frequency fluctuation	Disabled Enabled	±5%	_	_	±5%				±5% ±5%			
	Input por		Enabled	_	_	_	-	r more	(when	load	-	r more	(wher	load
		ver factor pprox. mass (kg)		- 5	- 5	- 6	ratio is 10.5	s 100% 10.5) 28	28	ratio is 10.5	3 100% 10.5) 28	28
		The harmonic suppre		-	-	-		10.0	20	20	10.0	10.0	20	20
FR-XC Dedicated stand-alone reactor FR-XCL Dedicated box-type reactor FR-XCB	*4 1 \ *5 M	MC Fuse *7 R/L1 MC Fuse *7 R/L1	lone.	ppression FR-XC	on enal	bled>>	n terminal			Inve R/L1 S/L2 T/I 3		U VI	approx	k. 713
	and 1 dama *2 Conriv N/- a consi + and *3 Confi curre conv react conn *4 Alwa termi Oper dama *5 Assig *6 Do n *7 Instal react Instru the fu *8 Do n	r connect the power /L3 on the inverter and ect between the inverter stency. Connecting t N/- will damage the rm the correct phas nt to connect between to connect between to connect between nals R/L1, S/L2, and ating the inverter will ge the converter. in the X10 signal to of connect anything I the UL listed fuse co or to meet the UL/cl cition Manual of the	supply to terminals Incorrect connection the converter. erter terminal P/+ ai d between the inverter in power supply an S/L2, and T/ L3). Incore the converter. the power supply an S/L2, and T/ L3). Incore the nonverter. the power supply an S/L2, and T/ L3). Incore the converter. the power supply an S/L2, and T/ L3). Incore the nonverter. the power supply an S/L2, and T/ L3). Incore the converter. the power supply and S/L2, and T/ L3). Incore the converter for inform or MC between the incore the power supply and the input terre to the supply and the supply terre to the supply terre to the supply and the supply terre to the supply terre to the supply and the supply terre to the supply te	R/L1, S. n will mode the ter terminal inverter -phase he d the correct nd ter. em will ninals. he FR-X to the ation at reaction at reaction at	/L2, inal ls P/					R1/L11 S1/L21 P/+ N/- N/- X10(MRS) SD R/L1 ^{*1} S1/L2 T/L3 R1/L11 S1/L21 P/+ N/- * ²	*5 *fer		M	



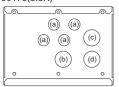
Option and Peripheral Devices

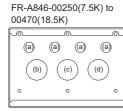

High power factor re. (H) Applicable to status 3,7k to status 7,5k to status 15k to status 30k to status 37k to status 7,5k to status 15k to status 30k to status 37k to status 55k to status 55k to status 55k to status 10k to status 100k to status 100k to status <th1< th=""><th>Name (model)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Specifi</th><th>cation</th><th>and s</th><th>structu</th><th>ıre</th><th></th><th></th><th></th><th></th><th></th><th></th></th1<>	Name (model)								Specifi	cation	and s	structu	ıre						
• Specifications • Index of the second se		Supp The p The c • Sele	ression Guid ower regen ommon con ection metho	delines fo eration f verter di od	or Con unction riving v	sume n com with se	ers Who les stat everal	o Recei ndard. inverter	ve High s is pos	i Voltag ssible.	je or S	Special	High V	oltage"	in Japar		ecified i	n "the ł	larm
High power factor FR-HC2-1 (I) T.SK 15K 13K 15K 13K 11SK				el accord	ling to	capac	city of t	the inve	rter or t	he app	licable	e moto	r, which	ever lar	ger.				
High power factor converter PR-HC2-HIJK T.SK 15K 10K 11SK 10K 11SK 10K 11SK 10K 11SK 10K 10K <t< th=""><th></th><th></th><th></th><th></th><th>:</th><th>200 V</th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th><th>400 \</th><th>/</th><th></th><th></th><th></th><th>T</th></t<>					:	200 V						1		400 \	/				T
High power factor converter FR-HC2- (H)[K Tites to tal tal to tal		_	*2	-												-			H56
Inter-phase 380 V to 480 V 50/60 Hz Reted input current 3 3 61 115 215 278 17 11 57 10 139 203 290 397 506 716 992 *1 The total capacity of the connected inverters. *1 *1 The total capacity of the connected inverters. *2 *1 The total capacity of the connected inverters. *3 *1 The total capacity of the connected inverters. *4 *1 The total capacity of the connected inverters. (ff an H280K or higher is purchased, it comes with FR-HCL21, FR-HCL22, FR-HCL22, and FR-HCM2.) *0 Outline dimension (LIN: mn) *0 *1 The total capacity FR-HC2 is inverters in the provide box fR-HCB2, and FR-HCM2.) *0 Outline dimension (LIN: mn) *0 *1			inverter capacity	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to	to
oph power factor rs:HC2- (H)[]K 1 1 1 1 10 13 230 280 397 308 110 195 1 The total capacity of the connected inverters: -2 17 The big power factor converter (FR-HC2) is purchased, it comes with reactor 1 (FR-HCL2), reactor 2 (FR-HCL2), and connect the DC reactor to the inverter when using a high power factor converter: (If an H280K or higher is purchased, it comes with FR-HCL21, FR-HCL22, FR-HCC2, FR-HCR2, and FR-HCM2.) • Outline dimension (Unit: mm) 10 132 150 100 237.5 230 140 190 320 165 1 7.5K 220 260 170 132 150 100 237.5 230 140 190 320 165 1 7.5K 220 260 170 132 150 100 237.5 230 140 190 320 165 1 7.5K 220 260 170 132 150 100 237.5 230 140 190 320 165 1 7.5K 220 260 170 132 150 140 100 237.5			voltage/	50 Hz				V	Three-	phase	380 V	' to 460	0 V 50/6	60 Hz					-
•1 The total capacity of the connected inverters. •2 1f a high power factor converter (FR-HC2) is purchased, it comes with reactor 1 (FR-HCL2), reactor 2 (FR-HCL2), or outside box (FR-HCB2). Do not connect the DC reactor to the inverter when using a high power factor converter. (If an H280K or higher is purchased, it comes with FR-HCL21, FR-HCL22, FR-HCR2, and FR-HCM2.) •2 •2 •1				33	61	115	215	278	17	31	57	110	139	203	290	397	506	716	993
1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	converter		*2 ine dimensio	If a high outside b (If an H2 on (Unit: High	power box (FF 80K or mm) powe conve	factor A-HCB highe	conver 2). Do r is pur	ter (FR- not conr chased,	HC2) is nect the it come	purchas DC rea s with F	ctor to	the inv L21, FF	erter wh R-HCL22	nen using 2, FR-HO 2	g a high CC2, FR·	power fa -HCR2, Dutside	actor cor and FR-	nverter.	
15K 250 400 190 162 172 126 257.5 260 165 190 320 165 30K 325 550 195 195 210 150 342.5 305 180 270 450 203 75K 465 620 300 240 215 215.5 474 460 280 400 450 250 H7.5K 220 300 190 132 140 100 237.5 220 140 145 250 H7.5K 220 300 190 132 140 100 237.5 220 140 145 145 145 145 145 145 145 146 146 165 190 320 165 165 190 320 165 165 190 320 165 145 145 145 146 146 146 165 120 165 140 165 165 190 320 165 165 190 320 165 165 <th>and the second se</th> <td>No1</td> <td>oupucity</td> <td>w</td> <td></td> <td></td> <td>D</td> <td>w</td> <td>н</td> <td>D</td> <td></td> <td>w</td> <td>н</td> <td>D</td> <td>w</td> <td>н</td> <td>D</td> <td></td> <td></td>	and the second se	No1	oupucity	w			D	w	н	D		w	н	D	w	н	D		
15K 250 400 190 162 172 126 257.5 260 165 190 320 165 165 190 320 165 165 190 320 165 190 320 165 190 320 165 165 190 320 165 165 392.5 365 200 270 450 203 165 300 190 132 195 182 195 101 342.5 300 380 350 250 165 190 350 450			7.5K	220		17	70	132		100	23	37.5		140	190		165		
55K 370 620 250 210 180 200.5 432.5 380 280 75K 465 620 300 240 215 215.5 474 460 280 400 450 250 H7.5K 220 300 190 132 140 100 237.5 220 140 450 250 260 450 250 260 450 250 260 165 190 320 165 165 190 320 165 180 190 320 165 180 190 320 165 180 170 126 257.5 260 165 190 320 165 180 165 180 203 220 200 270 450 203 165 180 180 300 350 250 280 300 350 250 140 160 160 160 160 160 160 160 160 160 <	8	>													100	020	100		
75K 465 620 300 240 215 215.5 474 460 280 400 450 250 H7.5K 220 300 190 132 140 100 237.5 220 140		200													270	450	203		
H15K 220 300 190 162 170 126 257.5 260 165 190 320 165 H30K 325 550 195 182 195 101 342.5 300 180 100 300 350 203 H55K 370 670 250 282.5 245 165 392.5 365 200 270 450 203 H75K 325 620 250 210 175 210.5 430 395 280 300 350 250 H110K 465 620 300 240 230 220 500 440 370 350 450 380 H160K 498 1010 380 280 295 274.5 560 520 430 400 450 440 H280K 680 1010 380 330 335 321 690 700 560 - - - H400K 790 1330 440 452 545 <td< td=""><th>and the second se</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>400</td><td>450</td><td>250</td><td></td><td></td></td<>	and the second se									_					400	450	250		
H30K 325 550 195 182 195 101 342.5 300 180 Image: constraint of the state of the sta			H7.5K	220	300	19	90	132	140	100	23	37.5	220	140					
H55K 370 670 250 282.5 245 165 392.5 365 200 270 450 203 H75K 325 620 250 210 175 210.5 430 395 280 300 350 250 H10K 465 620 300 240 230 220 500 440 370 350 450 380 H10K 465 620 300 240 230 220 500 440 370 350 450 380 H10K 465 620 300 240 230 220 500 440 370 350 450 380 H10K 498 1010 380 330 335 289.5 620 620 480 400 450 440 H280K 680 1010 380 330 335 321 690 700 560 - - - H400K 790 1330 440 452 545 645 632 </td <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>190</td> <td>320</td> <td>165</td> <td></td> <td></td>										_					190	320	165		
H75K 325 620 250 210 175 210.5 430 395 280 300 350 250 H110K 465 620 300 240 230 220 500 440 370 350 450 380 H10K 465 620 300 240 230 220 500 440 370 350 450 380 H160K 498 1010 380 280 295 274.5 560 520 430 400 450 440 H220K 498 1010 380 330 335 321 690 700 560 - - - H280K 680 1010 380 330 335 321 690 700 560 - - - H400K 790 1330 440 452 545 645 632 720 745 - - - High power factor converter Image: the state of the state															070	450	000		
H110K 465 620 300 240 230 220 500 440 370 350 450 380 H160K 498 1010 380 280 295 274.5 560 520 430 400 450 440 H220K 498 1010 380 330 335 289.5 620 620 480 400 450 440 H280K 680 1010 380 330 335 321 690 700 560 - - - H400K 790 1330 440 402 460 550 632 675 705 - - - H560K 790 1330 440 452 545 645 632 720 745 - - - High power factor converter Image: particular state of the stat																_			
H160K 498 1010 380 280 295 274.5 560 520 430 400 450 440 H220K 498 1010 380 330 335 289.5 620 620 480 400 450 440 H280K 680 1010 380 330 335 321 690 700 560 - - - H400K 790 1330 440 402 460 550 632 675 705 - - - H560K 790 1330 440 452 545 645 632 720 745 - - - High power factor converter Reactor 1, Reactor 2 Outside box Dutside box		>													-	_			
H220K 498 1010 380 330 335 289.5 620 620 480 - - H280K 680 1010 380 330 335 321 690 700 560 - - - H400K 790 1330 440 402 460 550 632 675 705 - - - H560K 790 1330 440 452 545 645 632 720 745 - - - High power factor converter Reactor 1, Reactor 2 Outside box Outside box Image: Converter Image: Conver		6																	
H400K 790 1330 440 402 460 550 632 675 705 - - - H560K 790 1330 440 452 545 645 632 720 745 - - - High power factor converter Reactor 1, Reactor 2 Outside box Image: state of the state o			H220K	498	1010) 38	30	330	335	289.	5 62	20	620	480	400	450	440		
H560K 790 1330 440 452 545 645 632 720 745 - - - High power factor converter Reactor 1, Reactor 2 Outside box Image: Converter Image: Conver			H280K	680	1010) 38	30	330	335	321	69	90	700	560	-	-	-		
High power factor converter I I I I I I I I I I I I I I I I I I I															-	-	-		
			H560K	790	1330	44	40	452	545	645	63	52	720	745	-	-	-		
					ver facto									•	Outsi	de box			

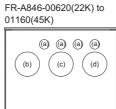
	Name (model)				;	Specific	ation and	structur	re				
 Sector method Sector							ja 400 V o	class mot	or with	an inve	rter.		
Surge voltages suppression filter suppression filter Surge voltages Surge				5.5 to 37	KVV motors	5.							
Surge voltage suppression fifter FR-BMF-Hight Surge voltage FR-BMF-Hight Surge voltage FR-BMF-Hight Surge voltage FR-BMF-Hight FR-BMF-Hight Surge voltage FR-BMF-Hight Surge voltage FR-BMF-Hight Surge voltage FR-BMF-Hight FR-BMF-Hight Surge voltage FR-BMF-Hight FR		Select the model according to the applied motor capacity. • Specifications											
Surge voltage surge		· ·			_								1
Surge voltage suppression fifter FR.BMF-HTX Surge voltage FR.BMF-HTX Surge voltage FR.BMF-HTX Surge voltage FR.BMF-HTX Surge voltage Surge voltage				7	.5		15		22			37	
Surge voltage suppression fifter FR-BMF-HTX Surge voltage FR-BMF-HTX Surge voltage Surge v				5.5	7.5	11	15	18.5	2	2	30	37	
Surge voltage suppression filter Protection to State a top-down transforme. Surge voltage Reted AC input voltage Protective structure (JEM open type (IP00) Cooling system Set cooling Maximum frequency: Protective structure (JEM open type (IP00) Cooling system Set cooling Maximum wirking length 100m to lower Approx.mass (kg) 5.5 9.5 11.5 19 US Surge voltage Surge voltage suppression fifter Protective structure (JEM open type (IP00) Cooling system Set cooling Maximum wirking length 100m to lower Approx.mass (kg) 5.5 9.5 11.5 19 US Surge voltage Surge voltage suppression fifter Protective structure (JEM open type (IP00) Cooling system Set top Particulation of lower Approx.mass (kg) 5.5 9.5 11.5 19 US Surge voltage Surge volta		I	Rated current (A)	17		31		43			71		1
Surge voltage suppression filter Protection diagram When an inverter has a filter nounded on its back, do not use such an inverter on a moving object or in a place that (cooling args) (Cooling args) (Ove	rload current rating*2	150% 60	s, 200% 0	.5 s (inv	verse-time	characte	ristics)				
Surge voltage suppression filter suppression filter FR-BMF-HIX TREMF +17 SK FR-BMF-HIX FR-BMF-HI		Rate	ed AC input voltage*2	Three-ph	nase 380 to	480 V							
Surge voltage suppression fifter Protection again (JEM pen type (IPOO) Cooling system Approx.mass (kg) 500 rot lower Approx.mass (kg) 500 rot lower Attitude/vibration Maximum tipulation Attitude/vibration Maximum tipulation Attitude/vibration Maximum tipulation Attitude/vibration Maximum capacity applicable with the Mitsubishi Electric 4-pole standard motor. (PM motors are not applicable). 10 Indicates the maximum capacity applicable with the Mitsubishi Electric 4-pole standard motor. (PM motors are not applicable). 10 Stat leo P27 WW fragmeny selection to 12 Hot loss. 10 Stat leo P27 WW fragmeny selection to 12 Hot loss. 10 Indicates the maximum capacity applicable with the Mitsubishi Electric 4-pole standard motor. (PM motors are not applicable). 10 Three- phase 10 Three- phase 10 Three- phase 10 Three- phase 10 Three- phase 10 Three- PCOM Free Mitsubishi FR-BMF-H15K FR-BMF-H		Per		323 to 52	28 V								
Surge voltage surge voltage stress free solutions stress free sol		Ma		120 Hz									
Surge voltage suppression filter FR-BMF-HTCSK FR-BMF-HTCK Three MCCB MC Inverter * R-BMF-HTCK * Connection diagram * Install a step-down transformer. • Outline dimension * R-BMF-HTCK * R-B					lower*3								
Surge voltage surges voltage		-	Protective structure (JEM Open type (IP00)										
Surge voltage suppression filter FR-BMF-HDK FR-BMF-													
Surge voltage suppression filter FR-BMF-HT/5K PL-BMF-HT													
Surge voltage suppression filter FR-BMF-HTJK The aboption of the sub-down transformer. • Outline dimension • Install a step-down transformer. • Outline dimension • Connection diagram • Install a step-down transformer. • Outline dimension • Contract of the transformer. • Outline dimension • Install a step-down transformer. • Outline dimension • Install = Step down transformer. • Outline dimension • Install = Step down transformer. • Outline dimension • Install = Step down transform • Install = Step down transform • Install = Step down tran										4			
Surge voltage supposed in the maximum capacity applicable with the Misubishi Electric 4-pole standard motor. (PM motors are not applicable). -1 Indicates the maximum capacity applicable with the Misubishi Electric 4-pole standard motor. (PM motors are not applicable). -2 Determined by the specification of the connected inverter (400 V class). -3 Determined by the specification of the connected inverter (400 V class). -3 Determined by the specification of the connected inverter (400 V class). -4 When an inverter has a filter mounted on its back, do not use such an inverter on a moving object or in a place that (connection diagram -4 When an inverter has a filter mounted on its back, do not use such an inverter on a moving object or in a place that (connection diagram -4 When an inverter has a filter mounted on its back, do not use such an inverter on a moving object or in a place that (connection diagram -5 Ontime dimension -5 Ontime dimension -5 Ontime dimension -5 Ontime dimension FR-BMF-H15K, H22K -5 Connection diagram -5 Ontime dimension -5		Surrounding air 40%0 to 150%0 (non foresting)							4				
Surge voltage surge voltage suppression filter FR-BMF+HJK FR-BMF+HJK Remove that a state of the specification of the connected inverter (400 V class). 3 Set the Pr.72 PWM frequency selection to 2 KHz or less. 3 Set the Pr.72 PWM frequency selection to 2 KHz or less. 4 When an inverter has a filter mounted on its back, do not use such an inverter on a moving object or in a place that (exceeding 1.96 m/s ²). • Connection diagram within 100m Three- phase * Install a step-down transformer. • Outline dimension FR-BMF-H15K, H22K FR-BMF-H37K FR-B													
Surge voltage surge voltage suppression filter FR-BMF+HJK FR-BMF+HJK Remove that a state of the specification of the connected inverter (400 V class). 3 Set the Pr.72 PWM frequency selection to 2 KHz or less. 3 Set the Pr.72 PWM frequency selection to 2 KHz or less. 4 When an inverter has a filter mounted on its back, do not use such an inverter on a moving object or in a place that (exceeding 1.96 m/s ²). • Connection diagram within 100m Three- phase * Install a step-down transformer. • Outline dimension FR-BMF-H15K, H22K FR-BMF-H37K FR-B													
Surge voltage suppression filter FR-BMF+HJK Removed that a step-down transformer. • Outline dimension FR-BMF+HJK FR-BMF+HJK FR-BMF+HJK • Indicates the maximum capacity applicable with the Mitsubishi Electric 4-pole standard motor. (PM motors are not applicable). • 2. Determined by the specification of the connected inverter (400 V class). • 3. Set the Pr.22 PWM frequency selection to 2 KHz or less. • 4. When an inverter has a filter mounted on its back, do not use such an inverter on a moving object or in a place that (exceeding 1.96 m/s ²). • Connection diagram within 100m Three- phase * Install a step-down transformer. • Outline dimension FR-BMF-HJ5K		viro		Indoors (without co	rosive	as flamm	able das	oil mis	st dust	and dir	t etc.)	
 surge voltage suppression filter e.1 Indicates the maximum capacity applicable with the Mitsubishi Electric 4-pole standard motor. (PM motors are not applicable.). e.2 Determined by the specification of the connected inverter (400 V class). e.3 Est the Pr.2 PW frequency selection to 2 Hz or less. e.4 When an inverter has a filter mounted on its back, do not use such an inverter on a moving object or in a place that (exceeding 1.96 m/s²). Connection diagram within 100m Three-GREE TO THE PREME TO THE PREME		Ē	-				-						
surge voltage suppression filter FR-BMF-HDK Surge voltage suppression filter FR-BMF-HDK Surge voltage suppression filter FR-BMF-HDK Surge voltage suppression filter FR-BMF-HDK Surge voltage suppression filter FR-BMF-HDK Surge voltage Surge			Annuacionistation	Maximun	II 1000 III,	5.9 m/s	01 1855*4	at 10 to 5		lifection	IS 01 A,	I, Z akesj]
FR-BMF-H7.5K FR-BMF-H15K, H22K FR-BMF-H37K Image: state		phase AC po	Wer T T T T T T T T T T T T T T T T T T T		R-BMF X Y T ⊕ TH0 7 TH1		n						
200 2-6 hole 200 2-6 hole 200 2-0 hole 200 2-0 hole 200 2-0 hole 200 2-0 hole		-											
445 445 455 457 457 457 457 457		FR-BMI			FR-BMF-	H15K, I		t 10 bek	F				
Main terminal block (MA) 2.3 Control terminal block (M3) (Unit: mm) (Unit: mm) Control terminal block (M5) Control terminal block (M5) Control terminal block (M5) Control terminal block (M3) Main terminal block (M3) Control terminal block		Earth termin	208 195 150	I block (M3)	6-M5 Earth term (M6) S Main terminal b	nal Terminal XIV2	al layout is a second s	000 000 000 000 000 000 000 000 000 00				Earth terminal (M8) Crimping terminal	

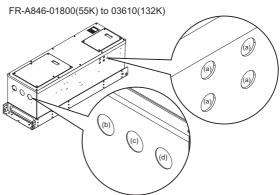
					S	pecificati	on ar	nd str	ucture	e							
	Sine wave filte			diuct the	mot		and a	urrop	twovo	formo	to ho c	inou	01/00	Inotal		0.11/01/0	filtor to
	A sine wave fill the output side																
	higher. (This product i	is available c	only with ge	neral-pur	pose	motors)	A sine	e wave	e filter	will bri	na ope	ratio	h char	acteris	stic eo	uivalen	t to the
	operation with	n a sine wave	e power sup	ply and a	ilso v	/ill provide	the f	followi	ng ber	nefits.	A sine	wave	filter v	vill brii	ng op	eration	
	characteristic equivalent to the operation with a sine wave power supply and also will provide the following benefits. (a) Low noise																
		lo surge curre mall motor lo		etandard	I mot	or)											
	 Operating con 	ndition	,														
	The following (a) S	settings and set "25" in Pr.					ne wa	ave filt	er.								
	Ť ΤΙ	his setting ch arrier frequer	hanges the	carrier fre	eque	ncy to 2.5											
	si	ine wave filte	er.	Ū		• • •									•	renter a	
		sine wave fil cannot be us														he filter	loss.)
		is applicable When using th											ly set.)			
	Circuit configu			e niter ai		111-1102	logei	iner, u	se the	WIT-DO		•					
			Sine wave filter]		_											
	Inverter (Carrier 2.5 kHz)				$+ \land$	M)											
		Reactor	ii li			lotor											
	+ 0		apacitor (Capa	acitor)	age	\checkmark											
	- Inverter output voltage		ilter near the inver citor cable, use a		ent	\frown											
	wave form	with size lar	rger than indicated	d in the		ave form at a notor terminal											
		size ".															
	Motor			Mo	del					A	h l .	*1					itsubishi I motor.
	capacity (kW) *1	ĸ	eactor for f	Rate	d	Capaci	tor fo	or filte		Applic inve		*2	Wh	en usi	ng two	or thre	е
	75	MT-BSL-75	5K	288	t (A)	1×MT-BS	SC-75	5K					par	allel as		n in the	
	200 V 90	MT-BSL-90		346		1×MT-BS				Select inverte			dia	gram.			
	75 90	MT-BSL-H		144 216		1×MT-BS 1×MT-BS				where	the						
	110		. ,	216		1×MT-BS				rated n current							
Sine wave filter MT-BSL-(H)[]K	400 V 160		. ,	288 432		2×MT-BS 2×MT-BS				1.1 will 90% or							
MT-BSC-(H)[]K		MT-BSL-H	. ,	432		2×MT-BS				of the							
	220	MT-BSL-H		432 576		2×MT-BS 3×MT-BS				inverte rated	r						
	280			576		3×MT-BS				current	i.						
	Reactor for sir	ne wave filter	r														
		Termin	Rating p	olate		Mod	اما		Δ	в	C	п	F	F	G	н	Mass
		* @	7 /		_				A 330	450	285	405	-	•	0	M12	(kg) 80
	<u>e</u>		/SHAR		~	MT_R	SI _74						216	328			00
					00		SL-75 SL-90	-				185 180	216 220	328 330	M10 M12		120
					200	MT-B	SL-90	0K	390	150	320	180	220	330	M12	M12	120 80
	×	ý Žo			200	MT-BS MT-BS	SL-90 SL-H7 -H751	0K 75K K-HC	390 330 385	150 150 150	320 285 345	180 185 185	220 216 216	330 318 315	M12 M10 M10	M12 M10 M10	80 110
		Ý ŻO			200	MT-BS MT-BSL MT-BSL MT-BS	SL-90 6L-H7 -H751 L-H1 [/]	0K 75K K-HC 10K	390 330 385 390	150 150 150 150	320 285 345 340	180 185 185 195	220 216 216 235	330 318 315 368	M12 M10 M10 M12	M12 M10 M10 M12	80 110 140
	4-G installation	Ý ŻO			>	MT-BS MT-BSL MT-BSL MT-BSL- MT-BSL-	SL-9(6L-H7 -H75 L-H1 H110 L-H1	0K 75K K-HC 10K K-HC 50K	390 330 385 390 420 455	150 150 150 150 150 170	320 285 345	180 185 185 195 195 200	220 216 216	330 318 315	M12 M10 M10	M12 M10 M10 M12 M12	80 110
	4-G installation hole	Ý Ž O	 F	product	400 V 200	MT-BS MT-BSL MT-BSL MT-BSL- MT-BSL- MT-BSL-	SL-90 6L-H7 -H75 L-H1 H110 L-H1 H150	0K 75K K-HC 10K K-HC 50K	390 330 385 390 420 455 450	150 150 150 150 170 200 300	320 285 345 340 400 397 455	180 185 185 195 195 200 390	220 216 235 235 240 430	330 318 315 368 370 380 500	M12 M10 M10 M12 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12	80 110 140 180 190 250
	4-G installation	Ý Ż O	E E	product.	>	MT-BS MT-BSL MT-BSL MT-BSL- MT-BSL-	SL-90 6L-H7 -H75 L-H11 H110 L-H11 H150 L-H22	0K 75K K-HC 10K 10K 10K 10K 50K 10K-HC 20K	390 330 385 390 420 455 450 495	150 150 150 150 150 150 200 300 200	320 285 345 340 400 397	180 185 185 195 195 200	220 216 216 235 235 240	330 318 315 368 370 380	M12 M10 M10 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12 M12	80 110 140 180 190
	4-G installation hole * Remove the eye	Y Z O	allation of the	product.	>	MT-BS MT-BSL MT-BSL MT-BSL MT-BSL MT-BSL MT-BSL MT-BSL MT-BSL	SL-90 SL-H7 -H75 L-H11 H110 L-H11 H150 L-H22 H220 L-H22	0K 75K K-HC 10K W-HC 50K 0K-HC 20K 0K-HC 80K	390 330 385 390 420 455 450 495 510 575	150 150 150 150 150 150 150 170 200 300 200 350 200	320 285 345 340 400 397 455 405 540 470	180 185 195 195 200 390 250 430 310	220 216 235 235 240 430 300 485 370	330 318 315 368 370 380 500 420 555 485	M12 M10 M12 M12 M12 M12 M12 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12	80 110 140 180 190 250 240 310 340
	4-G installation hole * Remove the eye This is a sample	Y Z O	allation of the	product.	400 V	MT-BS MT-BSL MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL-	SL-90 SL-H7 -H75 L-H1 ² H110 L-H12 H150 L-H22 H220 L-H22 H280	0K 75K K-HC 10K 50K 50K 20K 20K 1K-HC 80K	390 330 385 390 420 455 450 495 510 575 570	150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 200 350 200 400	320 285 345 340 400 397 455 405 540 470 590	180 185 195 195 200 390 250 430	220 216 235 235 240 430 300 485 370	330 318 315 368 370 380 500 420 555 485	M12 M10 M10 M12 M12 M12 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12	80 110 140 180 190 250 240 310
	4-G installation hole * Remove the eye This is a sample	y Z O	allation of the ppearance,	product.	400 V	MT-BS MT-BSL MT-BSL MT-BSL MT-BSL MT-BSL MT-BSL MT-BSL MT-BSL	SL-90 SL-H7 -H75 L-H1 ² H110 L-H12 H150 L-H22 H220 L-H22 H280	0K 75K K-HC 10K 50K 50K 20K 20K 1K-HC 80K	390 330 385 390 420 455 450 495 510 575 570	150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 200 350 200 400	320 285 345 340 400 397 455 405 540 470 590	180 185 195 195 200 390 250 430 310	220 216 235 235 240 430 300 485 370	330 318 315 368 370 380 500 420 555 485	M12 M10 M12 M12 M12 M12 M12 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12	80 110 140 180 190 250 240 310 340
	A-G installation hole Remove the eye This is a sample which differs dep Capacitor for s	y Z O	allation of the ppearance,	product.	> 007	MT-BS MT-BSL MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL-	SL-90 SL-H7 -H75 L-H1 H110 L-H12 H150 L-H22 H220 L-H22 H280 ctor of	0K 75K K-HC 10K 50K 50K 20K 20K 1K-HC 80K	390 330 385 390 420 455 450 455 510 575 570	150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 200 350 200 400	320 285 345 340 400 397 455 405 540 470 590	180 185 195 195 200 390 250 430 310 475	220 216 235 235 240 430 300 485 370 535	330 318 315 368 370 380 500 420 555 485 620	M12 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12	80 110 140 180 190 250 240 310 340 480
	A-G installation hole Remove the eye This is a sample which differs dep Capacitor for s	w z o a a b c c the outer appending on the sine wave filt	allation of the ppearance, e model.	Mod MT-B	> 000 Insta	MT-B3 MT-BSL-	SL-90 SL-H7 -H750 L-H11 H1100 L-H12 H1500 L-H22 H2200 L-H22 H2800 Ctor of A A 17 1	0K 75K K-HC 10K K-HC 50K 0K-HC 20K 0K-HC 80K 0K-HC 101 191	390 330 385 390 420 455 450 495 510 575 570 577 570 orizonta	150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 170 200 350 200 400 al surfa D 233	320 285 345 340 400 397 455 405 540 470 590 ace. E 72	180 185 185 195 200 390 250 430 310 475	220 216 235 235 240 430 300 485 370 535	330 318 315 368 370 380 500 420 555 485 620	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	80 110 140 180 190 250 240 310 340 480
	A-G installation hole Remove the eye This is a sample which differs dep Capacitor for s	w z o a a b c c the outer appending on the sine wave filt	e model.	Mod MT-B MT-B	P 000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MT-B3 MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- 200K 28	SL-9(SL-H7 -H75J L-H1 H1100 L-H1 H1500 L-H22 H2200 L-H22 H2200 Ctor of A A A A A A A A A A A A A	0K 75K K-HC 10K K-HC 50K K-HC 20K K-HC 80K K-HC 80K B1 191	390 330 385 390 420 455 450 495 510 575 570 570 572 570 575 570 572 285 240	150 150 150 150 150 150 150 150 150 150 150 150 150 200 350 200 400 al surfa 233 183	320 285 345 340 400 397 455 405 540 470 590 ace. 72 4 92 5	180 185 195 195 200 390 250 430 310 475	220 216 216 235 235 240 430 300 485 370 535	330 318 315 368 370 380 550 420 555 485 620 7 M8 7 7 8	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	80 110 140 180 190 250 240 310 340 480
	A-G installation hole Remove the eye This is a sample which differs dep Capacitor for s	e nut after insta e of the outer ap pending on the sine wave filt	allation of the ppearance, e model.	Mod MT-B MT-B	Point of the second	MT-B3 MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- all the reaction MT-BSL-	SL-90 SL-97 H751 L-H1 H1100 L-H12 H2200 L-H22 H2200 Ctor of A A A A A A A A A A A A A	DK 75K K-HC 10K K-HC 50K K-HC 20K K-HC 20K K-HC 80K K-HC 100 K-HC 206 191 191	390 330 385 390 420 455 450 495 510 575 570 577 570 572 2285 240 220	150 150 150 150 150 200 300 200 350 200 350 200 350 200 400 al surfation 233 183 173	320 285 345 340 400 397 455 405 540 470 590 ace. E 72 4 92 5 72 4	180 185 185 195 200 390 250 430 310 475	220 216 216 235 235 240 430 300 485 370 535 5 6 7 7 6 7 7 7 7 7 7 7 7	330 318 315 368 370 380 500 420 555 620 7 Mft 7 Mft 7 Mft	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	80 110 140 180 190 250 240 310 340 480
	A-G installation hole Remove the eye This is a sample which differs dep Capacitor for s	e nut after insta e of the outer ap pending on the sine wave filt	allation of the ppearance, a model.	Mod MT-B MT-B	Point of the second	MT-B3 MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- all the reac SK 200 00K 28 75K 200	SL-90 SL-97 H751 L-H1 H1100 L-H12 H2200 L-H22 H2200 Ctor of A A A A A A A A A A A A A	DK 75K K-HC 10K K-HC 50K K-HC 20K K-HC 20K K-HC 80K K-HC 100 K-HC 206 191 191	390 330 385 390 420 455 450 495 510 575 570 577 570 572 2285 240 220	150 150 150 150 150 200 300 200 350 200 350 200 350 200 400 al surfation 233 183 173	320 285 345 340 400 397 455 405 540 470 590 ace. 72 4 92 5	180 185 185 195 200 390 250 430 310 475	220 216 216 235 235 240 430 300 485 370 535 6 F 7 7 7 7 7 7 7 7	330 318 315 368 370 380 500 420 555 620 7 Mft 7 Mft 7 Mft	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	80 110 140 180 190 250 240 310 340 480
	 A-G installation hole * Remove the eye This is a sample which differs dep • Capacitor for s G G G G I I I I 	e nut after insta e of the outer ap pending on the sine wave filt	e model.	Mod MT-B MT-BS MT-BS n installii	> 000 F Insta SC-S SC-H SC-H SC-H ng, a	MT-BS MT-BSL-	SL-90 SL-97 -H75 L-H7 H110 L-H11 H110 L-H12 H120 L-H22 H220 Ctor of A A A A A A A A A A A A A	0K 75K K-HC 10K 550K 560K WK-HC 20K KK-HC 80K KK-HC 191 192 191 191	390 330 385 390 420 455 455 575 570 570 3700 285 240 220 280	150 150 150 150 150 150 150 150 150 150 150 150 150 200 300 300 200 350 200 350 200 300 400 233 183 173 233	320 285 345 340 400 397 455 540 470 590 ace. E 92 72 4 92 72 4	180 185 195 195 200 390 250 430 310 475	220 216 216 235 235 240 430 300 485 370 535 5 6 7 7 6 7 7 7 7 7 7 7 7	330 318 315 368 370 380 500 420 555 620 7 Mft 7 Mft 7 Mft	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	80 110 140 180 190 250 240 310 340 480
	A-G installation hole * Remove the eye This is a sample which differs dep • Capacitor for s <u>G-G-T</u> <u>I</u> <u>I</u> <u>I</u> <u>B</u> <u>A</u>	e nut after insta e of the outer ap pending on the sine wave filt	E F allation of the ppearance, e model. ter Noo7	Mod MT-B MT-BS MT-BS n installii ommend gauge of	Note the sector of the sect	MT-BS MT-BSL-	SL-90 SL-90 SL-H7 SL-H75 L-H75 H110 L-H11 H110 L-H12 H1200 L-H220 L-H220 L-H210 L-H220 L-H210 L-H220 L-H210 L-H220 L-H210 L-H220 L-H210	B B 1911 1921 1921 1931 1931 1931 1931 1931 1931 1931	390 330 385 390 420 455 510 575 570 572 285 240 220 280 gap be	150 150 150 150 150 150 170 200 300 200 350 200 350 200 350 200 350 200 350 200 350 200 350 233 173 233 twwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww	320 285 345 340 397 455 540 470 590 ace. 2 72 4 92 5 72 4 72 4 72 4 72 4 72 4 72 4 72 4	180 185 185 195 200 390 250 430 310 475 1 45 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	220 216 215 235 240 430 300 485 370 535 6 F 7 5 9 7 5 1 7 1 1 1 1 1 1 1 1	330 318 315 368 370 555 485 620 7 M8 7 M6 7 M6 7 M6	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	80 110 140 180 250 240 310 340 480
	A-G installation hole * Remove the eye This is a sample which differs dep • Capacitor for s • Capacitor for s • G = G = T • A • B • A	e nut after insta e of the outer ap pending on the sine wave filt	E F allation of the ppearance, e model. ter Voc Ne e Recc The the ii	Mod MT-B MT-B MT-BS n installin ommende gauge of nduction	A log of the second	MT-B3 MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- MT-BSL- all the react X X 75K 200 00K 28 75K 200 110K 20 110K 20	SL-90 SL-H7 H751 L-H7 H1100 L-H22 H1200 L-H22 H2200 Ctor of A A A A A A A A A A A A A	B B 191 191 191 191 191 191	390 330 385 390 420 450 450 575 570 285 240 220 280 gap be	150 150 150 150 150 150 170 200 300 200 300 200 300 200 300 200 300 200 300 200 300 200 400 233 183 173 233 etween verter and W	320 285 345 340 400 5540 470 590 ace. 1 92 72 4 72 4 72 4 72 4 72 4 72 4 72 4	180 185 185 195 195 200 390 250 430 310 475 1 45 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 6 8 1 5 1 5 5	220 216 215 235 240 430 300 535 6 P 7 6 Q 7 7 7 7 7 7 7 7	330 318 315 368 370 555 620 420 555 620 420 555 620 7 Mf 7 7 Mf 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	80 110 140 180 250 240 310 340 480
	A-G installation hole * Remove the eye This is a sample which differs dep • Capacitor for s • Capacitor for s • G = G = T • A • B • A	e nut after insta e of the outer ap pending on the sine wave filt	E F allation of the ppearance, e model. ter Voor Noor Noor Whe • Recor The the in The	Mod MT-B MT-B MT-BS n installin ommende gauge of nduction	> 009 Insta SC-H SC-H mg, a ed case the moto table	MT-BS MT-BSL-	SL-90 iL-H7 H75i L-H11 H1100 L-H11 H1150 L-H220 H2200 L-H22 L L H200 L H200	B B 191 191 191 191 191 191	390 330 385 390 420 455 510 575 570 570 572 285 240 220 280 gap be the in U, V, uge of	150 150 150 150 150 150 170 200 300 200 300 200 300 200 300 200 300 200 300 200 300 200 400 233 183 173 233 etween verter and W	320 285 345 340 397 455 540 470 590 ace. 2 72 4 72 4 72 4 72 4 72 4 72 4 72 4 72 4 72 4 72 4 72 4 72 4 72 4 5 6 72 4 72 4 72 4 72 4 7 4 5	180 185 185 195 200 390 250 310 475 • • • • • • • • • • • • • • • • • • •	220 216 215 235 240 430 300 485 370 535 6 I 7 5 9 7 5 9 7 5 9 7 5 9 7 5 9 7 5 9 7 5 9 7 5 9 7 7 7 7 7 7 7 7 7 7 7 7 7	330 318 315 368 370 555 620 420 555 620 420 555 620 7 Mf 7 7 Mf 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	M12 M10 M10 M12 M12 M12 M12 M12 M12 M12 M12 M12 M12	80 110 140 180 250 240 310 340 480

Dedicated cable option


Option and Peripheral Devices


• Cable glands and nuts (IP55 compatible model)


For wiring of the IP55 compatible model, fix the cables using a cable gland and a nut, according to the diameter of the holes of the wiring cover.


For the details such as wiring cover hole diameters and recommended cable glands, refer to the following table.

FR-A846-00023(0.4K) to 00170(5.5K)

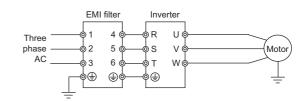
Inverter capacity	Symbol	Recommended layout example	Hole diameter (mm)	Recommended cable gland (Manufactured by LAPP KABEL)	Recommended nut (Manufactured by LAPP KABEL)
	(a)	Control circuit wiring	20.3	SKINTOP MS-SC-M20 53112630 *1 SKINTOP MS-M20 53112020 *2	SKINDICHT SM-M20 52103020
FR-A846-00023(0.4K) to 00170(5.5K)	(b)	AC power input wiring		SKINTOP MS-SC-M32 53112650 *1	
10 00 170(5.5K)	(c)	Brake unit connection wiring	32.3	SKINTOP MS-M32 BRUSH 53112677 *1	SKINDICHT SM-M32 52103040
	(d)	Inverter output wiring		SKINTOP MS-M32 53112040 *2	
	(a)	Control circuit wiring	20.3	SKINTOP MS-SC-M20 53112630 *1 SKINTOP MS-M20 53112020 *2	SKINDICHT SM-M32 52103020
FR-A846-00250(7.5K) to 00470(18.5K)	(b)	AC power input wiring	SKINTOP MS-SC-M40 53112660 *1		
10 00470(10.51()	(c)	Brake unit connection wiring	40.4	SKINTOP MS-M40 BRUSH 53112678 *1	SKINDICHT SM-M40 52103050
	(d)	Inverter output wiring		SKINTOP MS-M40 53112050 *2	
	(a)	Control circuit wiring	20.3	SKINTOP MS-SC-M20 53112630 *1 SKINTOP MS-M20 53112020	SKINDICHT SM-M20 52103020
FR-A846-00620(22K) to 02600(90K)	(b)	AC power input wiring			
10 02000(90K)	(c)	Brake unit connection wiring	63	SKINTOP MS-M63 BRUSH 53112680 *1 SKINTOP MS-M63 53112070 *2	SKINDICHT SM-M63 52103070
	(d)	Inverter output wiring			
	(a)	Control circuit wiring	20.3 SKINTOP MS-SC-M20 53112630 *1 SKINTOP MS-M20 53112020 *2		SKINDICHT SM-M20 52103020
FR-A846-03250(110K) to 03610(132K)	(b)	AC power input wiring			
10 030 10(132K)	(c)	Brake unit connection wiring	63	SKINTOP MS-M63 BRUSH PLUS 53112681 *1 SKINTOP MS-M63 PLUS 53112080 *2	SKINDICHT SM-M63 52103070
	(d)	Inverter output wiring			

*1 EMC-compliant cable gland

*2 General-purpose cable gland

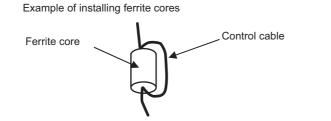
Recommended EMI filter

To support compliance with shipping classifications, use the following input line filter or an equivalent for electromagnetic compatibility (EMC). The following table indicates the specifications of the EMI filters used with inverters.


Inverter model	EMI filter mo	odel (Soshir	Electric Co	o., Ltd.)
FR-A840-[]	SLD	LD	ND	HD
00023(0.4K)				
00038(0.75K)	HF3010C-SZA			
00052(1.5K)				
00083(2.2K)	HF3020C-SZA			
00126(3.7K)	TII 3020C-32A			
00170(5.5K)	HF3030C-SZA		HF3020C-5	SZA
00250(7.5K)	HF3030C-SZA			
00310(11K)	HF3040C-SZA			
00380(15K)	HF3050C-SZA		HF3040C-5	SZA
00470(18.5K)	HF3060C-SZA			
00620(22K)	HF3080C-SZA			
00770(30K)	HF3100C-SZA			
00930(37K)	HF3150C-SZA	HF3100C-8	SZA	
01160(45K)	HF3150C-SZA			
01800(55K)	HF3200C-SZA			
02160(75K)	HF3250C-SZA			
02600(90K)	TH 52500-52A			

Inverter model	EMI filter mo	odel (Soshin	Electric Co	., Ltd.)
FR-A840-[]	SLD	LD	ND	HD
03250(110K)	HF3600C-SJB	HF3300C-S	SJB	
03610(132K)	HF3600C-SJB		HF3300C-S	SJB
04320(160K)				
04810(185K)	HF3600C-SJB			
05470(220K)	HE3000C-33B			
06100(250K)				
06830(280K)	HF31000C-SJB			

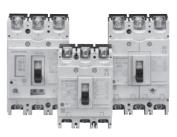
	EMI filter n	nodel	
SLD	LD	ND	HD
HF31000C-SJB			
HF31200C-SJB			
HF31600C-SJB			
	HF31000C-SJB HF31200C-SJB	SLD LD HF31000C-SJB HF31200C-SJB	HF31000C-SJB


• Noise filter wiring example

Install the recommended EMI filter by Soshin Electric Co., Ltd. to the input side of the inverter, as shown below.

• Recommended ferrite core (IP55 compatible model)

To support compliance with shipping classifications, install the recommended ferrite core (ESD-SR-250 manufactured by TOKIN Corporation) or an equivalent by two turns (passing the cable twice through the core) for wiring of control circuit terminals for electromagnetic compatibility (EMC).


For using one ferrite core

For using two ferrite cores

Option and Peripheral Devices

Mitsubishi Electric Molded Case Circuit Breakers and Earth Leakage Circuit Breakers **WS-V Series**

"WS-V Series" is the new circuit breakers that have a lot of superior aspects such as higher breaking capacity, design for easy use, standardization of accessory parts, and compliance to the global standards.

Features

Technologies based on long years of experience are brought together to achieve improved performance

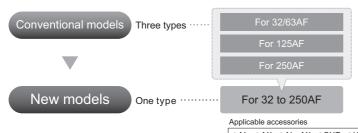
The new circuit breaking technology "Expanded ISTAC" has improved the currentlimiting performance and upgraded the overall breaking capacity.

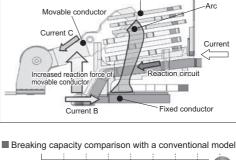
Expansion of the conductor under the stator shortens the contact parting time of the mover as compared to the conventional ISTAC structure.

The current-limiting performance has been improved remarkably. (The maximum peak current value has been reduced by approx. 10%.)

· Compact design for ease of use

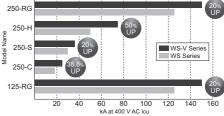
The thermal adjustable circuit breakers and electronic circuit breakers are smaller.




(Conventional model: . 105 × 165 × 86 mm)

(New model) 105 × 165 × 68 mm)

Types of internal accessories are reduced from 3 types to 1 type Standardization of internal accessories contributes to a reduction of stock and


delivery time.

New circuit breaking technology (Expanded ISTAC)

Grid

●AL ●AX ●AL+AX ●SHT ●UVT

Lineup of UL 489 listed circuit breakers with 54 mm width "Small Fit" (F) Style

The compact breakers contribute to a size reduction of machines, and IEC 35 mm rail mounting is standard.

Volume ratio

For security and standard compliance of machines, F-type and Vtype operating handles are available for breakers with 54 mm width.

Lineup of UL 489 listed circuit breakers for 480 V AC "High Performance" The breaking capacity has been improved to satisfy the request for SCCR upgrading.

Breaking capacity of UL 489 listed circuit bre	akers	for 480 V	/
AC (UL 489)			

NF125-SVU/NV125-SVU	30 kA
NF125-HVU/NV125-HVU	50 kA
NF250-SVU/NV250-SVU	35 kA
NF250-HVU/NV250-HVU	50 kA

NF125-SVU

NF125-HVU

NF250-SVU

NF250-HVU

2
Ē,
<
റ്
<u> </u>
g
ß
Ē
ഗ
Ë
2
=
ö
¥
1
Q
Ð
ä
Ξ
Ś
റ
à
듁
2
Ō
6

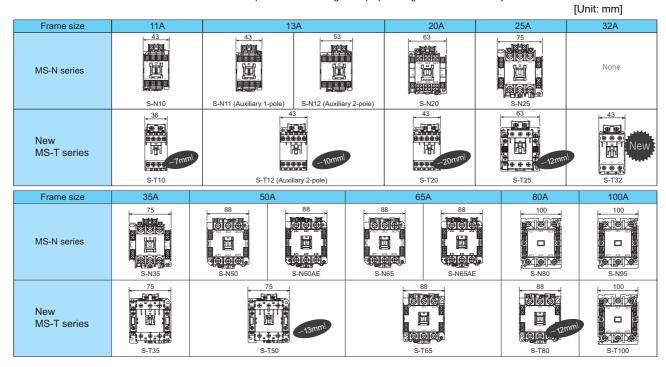
Mitsubishi Electric Magnetic Motor Starters and Magnetic Contactors MS-T Series

Mitsubishi Electric magnetic motor starters have been newly designed and the MS-T series has been released... The MS-T series is smaller than ever, enabling more compact control panel. The MS-T series is suitable for other Mitsubishi Electric FA equipment. In addition, the MS-T conforms to a variety of global standards, supporting the global use.

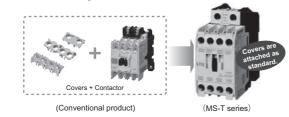
The width of MS-T series is reduced by 32% as compared to the prior MS-N series, enabling a more compact panel.

Features

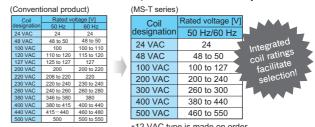
Compact


The width of the 10 A-frame model is as small as 36 mm.

General-purpose magnetic contactor with smallest width*1 in the industry.


S-T10

For selection, refer to page 215. *1 Based on Mitsubishi Electric research as of September 2015 in the general-purpose magnetic contactor industry for 10 A-frame class



Standardization

- Covers provided as standard equipment
- Safety improvement is achieved by the standard terminal cover. It is not necessary for the new MS-T series to order a dedicated terminal cover (S-N[]CX) or a retrofit cover (UN-CW, etc.), which is required for the former MS-N series. (Prevention of failure to order) The number of items in stock can be reduced.
- The standard integrated terminal cover eliminates the need for additional ordering

- · Widened range of operation coil ratings (AC operated model) The widened range reduces the number of operation coil rating types from 13 (MS-N series) to 7.
- The reduced number of the operation coil types enables more simplified customers' ordering process and the faster delivery. Customers can select the operation coil more easily.

*12 VAC type is made on order

Global Standard

Conforms to various global standards

Our magnetic contactors are certified as compliant not only with major international standards such as IEC, JIS, UL, CE, and CCC but also with ship classification standards and country specific standards.

This will help our customers expand their business overseas.

		A	Applicable Standa	rd		Safety Standard
	International	Japan	Eur	оре	China	U.S.A./ Canada
			EN	Certification	GB	
Standard	150		EC Directive	body	GB	
	IEC _{*2}	JIS	CE	TOV Rhaintand	(()	cULUs

*2 The MS-T series also provide safe isolation (mirror contact) specified in the IEC standard.

*3 The motor starters are certified under each type name of the magnetic contactors and the thermal overload relays on the condition that the magnetic contactors and the thermal overload relays are used in combination.

Mitsubishi Electric Magnetic Motor Starters and Magnetic Contactors **MS-N Series (32 A-Frame Class or Higher)**

Environment-friendly Mitsubishi Electric MS-N series ensures safety and conforms to various global standards. Its compact size contributes to space-saving in a machine. The MS-N series is suitable for other Mitsubishi Electric FA equipment and can be used globally.

Features

Bifurcated contact adopted to achieve high contact reliability

Contact reliability is greatly improved by combining bifurcated moving contact and stationary contact. This series responds to the various needs such as the application to safety circuit. (The MS-T series also has bifurcated contacts.)

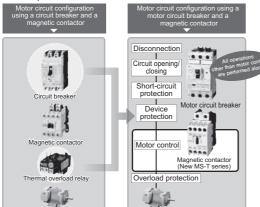
Mirror contact (auxiliary contact off at main contact welding)

The MS-N series meets requirements of "Control functions in the event of failure" described in EN 60204-1 "Electrical equipment of machines", being suitable as interlock circuit contact. The MS-N series is applicable for category 4 safety circuit. We ensure safety for our customers. (The MS-T series also has mirror contacts.)

Various option units

Various options including surge absorbers and additional auxiliary contact blocks are available.

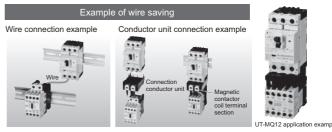
Motor Circuit Breaker MMP-T Series


Motor circuit protection (against overload / phase loss / short-circuit) is achievable the MMP-T series alone. The wire-saving, space-saving design enables downsizing of the enclosure. The MMP-T series can be used in combination with the MS-T series (DC operated model) *1

The connection conductor unit for the DC operated compact model (SD-T) is to be released soon. *1

Features

• What is the motor circuit breaker?


The motor circuit breaker, applicable to the motor circuit, has the functions of a circuit breaker and a thermal overload relay in one unit. The motor circuit breaker provides protection against overload, phase loss, and short circuit.

Wire saving

Using a connection conductor unit (option) for connecting a motor circuit breaker and a contactor reduces work hours required for wiring.

A connection conductor unit for the high sensitivity contactor (SD-Q) is also available. (Model: UT-MQ12)

Example of space saving

circuit breakers

motor (

Vith

Inside the enclosure

势。周。周。周。 周

宜宜宜宜宜宜

· Compliance to major standards support customers' overseas business

Compliance with major global standards

Not only major international standards such as IEC, JIS, UL, CE, and CCC but also other national standards are certified. This will help our customers expand their business in foreign countries.

Standard		Safety Standard					
	International	Japan	Eur	оре	China	U.S.A./ Canada	
	IEC		EN EC Directive	Certification body	GB	cULus	
		JIS	CE	Line TOV Breakand			

UL60947-4-1A Type E/F is also covered.

Compliance of the device to UL's Type E/F combination can surely support export to the United States.

Inside the enclosure

بريشر يشر يشريهم يشريها

ii, ii, ii, ii

Selecting the rated sensitivity current for the earth leakage circuit breaker

When using an earth leakage circuit breaker with the inverter circuit, select its rated sensitivity current as follows, independently of the PWM carrier frequency.

<Example>

- Breaker designed for harmonic and surge suppression Rated sensitivity current $l\Delta n \ge 10 \times (lg1 + lgn + lgi + lg2 + lgm)$
- Standard breaker
- Rated sensitivity current
- $|\Delta n \ge 10 \times \{ lg1 + lgn + lgi + 3 \times (lg2 + lgm) \}$
- Ig1, Ig2: Leakage currents in wire path during commercial power supply operation
- Ign: Leakage current of inverter input side noise filter
- Igm: Leakage current of motor during commercial power supply operation
- Igi: Leakage current of inverter unit

Example of leakage current of cable path per 1 km during the commercial power supply operation when the CV cable is routed in metal conduit (200 V 60 Hz)

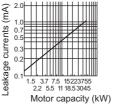
> (mA) 120

currents

Leakage

100

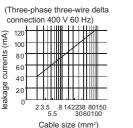
80

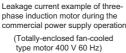

60

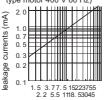
40

20

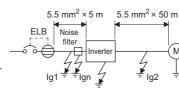
C


Leakage current example of three-phase induction motor during the commercial power supply operation (200 V 60 Hz)




Example of leakage current per 1 km during the commercial power supply operation when the CV cable is routed in metal conduit

2 3.5 8 14 2238 80150 5.5 30 60 100


Cable size(mm²)

Motor capacity (kW)

lgi

Install the earth leakage circuit breaker (ELB) on the input side of the (a) inverter.

lam

200 V 22 kW

In the \downarrow connection earthed-neutral system, the sensitivity current (b) is blunt against a ground fault in the inverter output side. Earthing (Grounding) must conform to the requirements of national and local safety regulations and electrical codes. (NEC section 250, IEC 61140 class 1 and other applicable standards)

Selection example (in the case of the above figure)

	Breaker designed for harmonic and surge suppression	Standard breaker			
Leakage current lg1 (mA)	33× - 5	5 m 00 m =0.17			
Leakage current Ign (mA)	0 (without noise filter)				
Leakage current Igi (mA)	1 (without EMC filter) Refer to the following table for the leakage current of the inverter.*1				
Leakage current lg2 (mA)	33× <u>50 m</u> =1.65				
Motor leakage current Igm (mA)	0.18				
Total leakage current (mA)	3.00 6.66				
Rated sensitivity current (mA) (≥lg × 10)	30 100				

For whether to use the EMC filter or not, refer to the Instruction Manual (Detailed).

For " \downarrow " connection, the amount of leakage current is appox.1/3 of the above value

Inverter/converter unit leakage current

200 V class (Input power supply conditions: 220 V/60 Hz, power supply unbalance: within 3%)

、 ·			
Inverter	FR-A800 (Standard model)		
EMC filter	ON	OFF	
Phase earthing (grounding)	22	1	
		(mA)	

400 V class (Input power supply conditions: 440 V/60 Hz, power supply unbalance: within 3%)

Inverter/ FR-A800 converter unit (Standard model)		FR-A846-C3 (IP55 compatible model)		FR-A846-C2 (IP55 compatible model)	FR-A842 (Separated converter type)	Converter unit FR-CC2		
EMC filter	ON	OFF	ON	OFF	ON *1	—	ON	OFF
Phase earthing (grounding)	35	2	35	2	*2	2	70	2
Earthed-neutral system	2	1	2	1	2	1	2	1

(mA)

Do not change the initially set ON (enabled) position of the EMC filter ON/OFF connector in the case of the inverter with a built-in C2 filter. The Class C2 *1 compatibility condition is not satisfied with the EMC filter OFF. (The FR-A846-00250(7.5K)-C2 to FR-A846-00470(18.5K)-C2 are not provided with the EMC filter ON/OFF connector. The EMC filter is always ON.)

The inverter with a built-in C2 filter must be used in the earthed-neutral system. *2

• Molded case circuit breaker, magnetic contactor, cable gauge

♦ 280K or lower

	Motor output (kW) *1		Molded case circuit breaker (MCCB) *2 or earth leakage circuit breaker (ELB) (NF, NV type) Power factor improving (AC or DC) reactor connection		Input side magnetic contactor *3 Power factor improving (AC or DC) reactor connection		Recommend	e (mm ²) *4 U, V, W	
Voltage		Applicable inverter model (ND rating)					R/L1, S/L2, T/L3 Power factor improving (AC or DC) reactor connection		
			Without	With	Without	With	Without	With	
	0.4	FR-A820-00046(0.4K)	5 A	5 A	S-T10	S-T10	2	2	2
	0.75	FR-A820-00077(0.75K)	10 A	10 A	S-T10	S-T10	2	2	2
	1.5	FR-A820-00105(1.5K)	15 A	15 A	S-T10	S-T10	2	2	2
	2.2	FR-A820-00167(2.2K)	20 A	15 A	S-T10	S-T10	2	2	2
	3.7	FR-A820-00250(3.7K)	30 A	30 A	S-T21	S-T10	3.5	3.5	3.5
	5.5	FR-A820-00340(5.5K)	50 A	40 A	S-T35	S-T21	5.5	5.5	5.5
	7.5	FR-A820-00490(7.5K)	60 A	50 A	S-T35	S-T35	14	14	8
	11	FR-A820-00630(11K)	75 A	75 A	S-T35	S-T35	14	14	14
200 V	15	FR-A820-00770(15K)	125 A	100 A	S-T50	S-T50	22	22	22
20	18.5	FR-A820-00930(18.5K)	150 A	125 A	S-T65	S-T50	38	22	22
	22	FR-A820-01250(22K)	175 A	125 A	S-T100	S-T65	38	38	38
	30	FR-A820-01540(30K)	225 A	150 A	S-T100	S-T100	60	60	60
	37	FR-A820-01870(37K)	250 A	200 A	S-N150	S-N125	80	60	60
	45	FR-A820-02330(45K)	300 A	225 A	S-N180	S-N150	100	100	100
	55	FR-A820-03160(55K)	400 A	300 A	S-N220	S-N180	100	100	100
	75	FR-A820-03800(75K)	-	400 A	-	S-N300	-	125	125
	90	FR-A820-04750(90K)	-	400 A	-	S-N300	-	150	150
	0.4	FR-A840-00023(0.4K)	5 A	5 A	S-T10	S-T10	2	2	2
	0.75	FR-A840-00038(0.75K)	5 A	5 A	S-T10	S-T10	2	2	2
	1.5	FR-A840-00052(1.5K)	10 A	10 A	S-T10	S-T10	2	2	2
	2.2	FR-A840-00083(2.2K)	10 A	10 A	S-T10	S-T10	2	2	2
	3.7	FR-A840-00126(3.7K)	20 A	15 A	S-T10	S-T10	2	2	2
	5.5	FR-A840-00170(5.5K)	30 A	20 A	S-T21	S-T12	2	2	2
	7.5	FR-A840-00250(7.5K)	30 A	30 A	S-T21	S-T21	3.5	3.5	3.5
	11	FR-A840-00310(11K)	50 A	40 A	S-T21	S-T21	5.5	5.5	5.5
	15	FR-A840-00380(15K)	60 A	50 A	S-T35	S-T21	8	5.5	5.5
	18.5	FR-A840-00470(18.5K)	75 A	60 A	S-T35	S-T35	14	8	8
	22	FR-A840-00620(22K)	100 A	75 A	S-T35	S-T35	14	14	14
	30	FR-A840-00770(30K)	125 A	100 A	S-T50	S-T50	22	22	22
0 \	37	FR-A840-00930(37K)	150 A	100 A	S-T65	S-T50	22	22	22
400	45	FR-A840-01160(45K)	175 A	125 A	S-T100	S-T65	38	38	38
	55	FR-A840-01800(55K)	200 A	150 A	S-T100	S-T100	60	60	60
	75	FR-A840-02160(75K)	-	200 A	-	S-T100	-	60	60
	90	FR-A840-02600(90K)	-	225 A	-	S-N150	-	60	60
	110	FR-A840-03250(110K)	-	225 A	-	S-N180	-	80	80
	132	FR-A840-03610(132K)	-	350 A	-	S-N220	-	100	100
	150	FR-A840-04320(160K)	-	400 A	-	S-N300	-	125	125
	160	FR-A840-04320(160K)	-	400 A	-	S-N300	-	125	125
	185	FR-A840-04810(185K)	-	400 A	-	S-N300	-	150	150
	220	FR-A840-05470(220K)	-	500 A	-	S-N400	-	2×100	2×100
	250	FR-A840-06100(250K)	-	600 A	-	S-N600	-	2×100	2×100
	280	FR-A840-06830(280K)	ł	600 A	ł	S-N600	1_	2×100	2×100

*1 Assumes the use of a Mitsubishi Electric 4-pole standard motor with the motor capacity of 200 VAC 50 Hz.

*2 Select an MCCB according to the power supply capacity. Install one MCCB per inverter.

(For the use in the United States or Canada, refer to "Instructions for UL and cUL" in the Instruction Manual (Startup), and select an appropriate fuse or molded case circuit breaker (MCCB).)

 MCCB-	INV	-M
MCCB	INV	-M

*3 The magnetic contactor is selected based on the AC-1 class. The electrical durability of magnetic contactor is 500,000 times. When the magnetic contactor is used for emergency stops during motor driving, the electrical durability is 25 times. If using an MC for emergency stop during motor driving or using it on the motor side during commercial power supply operation, select an MC with the class AC-3 rated current for the rated motor current.
 *4 Cables

For the FR-A820-03160(55K) or lower and the FR-A840-01800(55K) or lower, it is the gauge of a cable with the continuous maximum permissible temperature of 75°C. (HIV cable (600 V grade heat-resistant PVC insulated wire), etc.) It assumes a surrounding air temperature of 50°C or lower and the wiring distance of 20 m or shorter.

For the FR-A820-03800(75K) or higher and the FR-A840-02160(75K) or higher, it is the gauge of the cable with the continuous maximum permissible temperature of 90°C or higher. (LMFC (heat resistant flexible cross-linked polyethylene insulated cable), etc.) It assumes a surrounding air temperature of 50°C or lower and in-enclosure wiring.

NOTE :

When the inverter capacity is larger than the motor capacity, select an MCCB and a magnetic contactor according to the inverter model, and select cables and reactors according to the motor output.

• When the breaker on the inverter's input side trips, check for the wiring fault (short circuit), damage to internal parts of the inverter etc. The cause of the trip must be identified and removed before turning ON the power of the breaker.

315K or higher

		Applicable inverter model (ND rating)		Molded case circuit breaker (MCCB) *2		HIV cables, etc. (mm ²) *4		
Voltage	Motor output (kW) *1		Applicable converter model	earth leakage circuit breaker (ELB) (NF, NV type)	Input-side magnetic contactor *3	R/L1, S/L2, T/L3	P/+, N/-	U, V, W
	315	FR-A842-07700(315K)	FR-CC2-H315K	700 A	S-N600	2×150	2×150	2×150
	355	FR-A842-08660(355K)	FR-CC2-H355K	800 A	S-N600	2×200	2×200	2×200
	400	FR-A842-09620(400K)	FR-CC2-H400K	900 A	S-N800	2×200	2×200	2×200
400 V	450	FR-A842-10940(450K)	FR-CC2-H450K	1000 A	1000 A rated product	2×250	2×250	2×250
	500	FR-A842-12120(500K)	FR-CC2-H500K	1200 A	1000 A rated product	3×200	3×200	2×250

Assumes the use of a Mitsubishi Electric 4-pole standard motor with the motor capacity of 400 VAC *1 50 Hz.

*2

Select an MCCB according to the power supply capacity. Install one MCCB per converter.

(For the use in the United States or Canada, refer to "Instructions for UL and cUL" in the Instruction Manual (Hardware), and select an appropriate fuse or molded case circuit breaker (MCCB).)

MCCB Converter unit INV (M) -MCCB-Converter unit-INV-(M)

*3 The magnetic contactor is selected based on the AC-1 class. The electrical durability of magnetic contactor is 500,000 times. When the magnetic contactor is used for emergency stops during motor driving, the electrical durability is 25 times. If using an MC for emergency stop during driving the motor, select an MC regarding the converter unit input side current as JEM1038-AC-3 class rated current. When using an MC on the inverter output side for commercial-power supply operation switching using a general-purpose motor, select an MC regarding the rated motor current as JEM1038-AC-3 class rated current.

*4 The gauge of the cable with the continuous maximum permissible temperature of 90°C or higher. (LMFC (heat resistant flexible cross-linked polyethylene insulated cable), etc.). It assumes a surrounding air temperature of 40°C or lower and in-enclosure wiring.

NOTE :

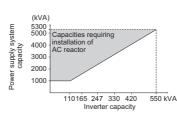
- When the converter unit capacity is larger than the motor capacity, select an MCCB and a magnetic contactor according to the converter unit model, and select cables and reactors according to the motor output.
- When the breaker on the converter unit's input side trips, check for the wiring fault (short circuit), damage to internal parts of the inverter and the converter unit, etc. The cause of the trip must be identified and removed before turning ON the power of the breaker.

Precautions for use

Safety instructions

- To use the product safely and correctly, make sure to read the "Instruction Manual" before the use.
- This product has not been designed or manufactured for use with any equipment or system operated under life-threatening conditions.
- Please contact our sales representative when considering using this product in special applications such as passenger mobile, medical, aerospace, nuclear, power or undersea relay equipment or system.
- Although this product was manufactured under conditions of strict quality control, install safety devices to prevent serious accidents when it is used in facilities where breakdowns of the product or other failures are likely to cause a serious accident.
- Do not use the inverter for a load other than the three-phase induction motor and the PM motor.
- Do not connect a PM motor in the induction motor control settings (initial settings). Do not use an induction motor in the PM sensorless vector control settings. It will cause a failure.
- When using an IPM motor (MM-CF), also refer to the precautions for use of the IPM motors (MM-CF).

Operation


- When a magnetic contactor (MC) is installed on the input side, do not use the MC for frequent starting/stopping. Otherwise the inverter may be damaged.
- When a fault occurs in the inverter, the protective function is acticvated to stop the inverter output. However, the motor cannot be immediately stopped. For machinery and equipment that require an immediate stop, provide a mechanical stop/holding mechanism.
- Even after turning OFF the inverter/the converter unit, it takes time to discharge the capacitor. Before performing an inspection, wait 10 minutes or longer after the power supply turns OFF, then check the voltage using a tester, etc.

Wiring

- Applying the power to the inverter output terminals (U, V, W) causes a damage to the inverter. Before power-on, thoroughly check the wiring and sequence to prevent incorrect wiring, etc.
- Terminals P/+, P1, N/-, and P3 are the terminals to connect dedicated options or DC power supply (in the DC feeding mode). Do not connect any device other than the dedicated options or DC power supply (in the DC feeding mode). Do not short-circuit between the frequency setting power supply terminal 10 and the common terminal 5, and between terminals PC and SD.
- To prevent a malfunction due to noise, keep the signal cables 10cm or more away from the power cables. Also, separate the main circuit cables at the input side from the main circuit cables at the output side.
- After wiring, wire offcuts must not be left in the inverter/the converter unit. Wire offcuts can cause an alarm, failure or malfunction. Always keep the inverter/the converter unit clean. When drilling mounting holes in an enclosure etc., take caution not to allow chips and other foreign matter to enter the inverter/ the converter unit.
- Set the voltage/current input switch correctly. Incorrect setting may cause a fault, failure or malfunction.

Power supply

 When the inverter is connected near a largecapacity power transformer (1000 kVA or more) or when a power factor correction capacitor is to be switched over, an excessive peak current may flow in the power input circuit, damaging the

inverter. To prevent this, always install an optional AC reactor (FR-HAL).

 If surge voltage occurs in the power supply system, this surge energy may flow into an inverter, and the inverter may display the overvoltage protection (E. OV[]) and trip. To prevent this, install an optional AC reactor (FR-HAL).

Installation

- Install the inverter in a clean place with no floating oil mist, cotton fly, dust and dirt, etc. Alternatively, install the inverter inside the "sealed type" enclosure that prevents entry of suspended substances. For installation in the enclosure, decide the cooling method and the enclosure size to keep the surrounding air temperature of the inverter/the converter unit within the permissible range (for specifications, refer to page 33).
- Some parts of the inverter/the converter unit become extremely hot. Do not install the inverter/the converter unit to inflammable materials (wood etc.).
- · Attach the inverter vertically.

Setting

- Depending on the parameter setting, high-speed operation (up to 590 Hz) is available. Incorrect setting will lead to a dangerous situation. Set the upper limit by using the upper frequency limit setting.
- Setting the DC injection brake operation voltage and operating time larger than their initial values causes motor overheating (electronic thermal O/L relay trip).

Real sensorless vector control

- Under Real sensorless vector control, always execute offline auto tuning before starting operations.
- The selectable carrier frequencies under Real sensorless vector control are 2, 6, 10, and 14 kHz.
- Torque control is not available in the low-speed (about 10 Hz or less) regenerative range, or in the low speed with the light load (about 5 Hz or less with about 20% or less of the rated torque). Select the vector control.
- Performing pre-excitation (LX signal and X13 signal) under torque control may start the motor running at a low speed even when the start command (STF or STR) is not input. The motor may run also at a low speed when the speed limit value = 0 with a start command input. Confirm that the motor running will not cause any safety problem before performing pre-excitation.
- Under torque control, do not switch between the forward rotation command (STF) and reverse rotation command (STR). The overcurrent trip (E. OC[]) or opposite rotation deceleration fault (E.11) occurs.
- For FR-A820-00250(3.7K) or lower and FR-A840-00126(3.7K) or lower, if continuous operation is performed under Real sensorless vector control, speed fluctuation may increase at 20 Hz or lower, or insufficient torque may occur in a low-speed range under 1 Hz. In such a case, stop the inverter once and re-accelerate it.
- If the inverter may restart during coasting under Real sensorless vector control, set the automatic restart after instantaneous power failure function to enable frequency search (Pr.57 ≠ "9999", Pr.162 = "10").
- Under Real sensorless vector control, sufficient torque may not be obtained in the extremely low-speed range of about 2 Hz or less.
- The approximate speed control range is as described below. Power drive: 1:200 (2, 4, 6 poles), 0.3 Hz or more for 60 Hz rating.

1:30 (8, 10 poles), 2 Hz or more for 60 Hz rating Regenerative driving: 1:12 (2 to 10 poles), 5 Hz or more for 60 Hz rating

Waterproof and dustproof performances (IP55 compatible model)

- The inverter is rated with an IPX5*1 waterproof rating and an IP5X*2 dustproof rating when the operation panel (FR-DU08-01), the front cover, the wiring cover, and the cable glands are securely fixed with screws.
- The items enclosed with the inverter such as the Instruction Manual or CD are not rated with the IPX5 waterproof or IP5X dustproof ratings.
- Although the inverter is rated with the IPX5 waterproof and IP5X dustproof ratings, it is not intended for use in water. Also, the ratings do not guarantee protection of the inverter from needless submersion in water or being washed under strong running water such as a shower.
- Do not pour or apply the following liquids over the inverter: water containing soap, detergent, or bath additives; sea water; swimming pool water; warm water; boiling water; etc.
- The inverter is intended for indoor 4 installation and not for outdoor installation. Avoid places where the inverter is subjected to direct sunlight, rain, sleet, snow, or freezing temperatures.
- If the operation panel (FR-DU08-01) is not installed, if the screws of the operation panel are not tightened, or if the operation panel is damaged or deformed, the IPX5 waterproof performance and the IP5X dustproof performance are impaired. If any abnormalities are found on the operation panel, ask for an inspection and repair.
- If the screws of the front cover or the wiring cover are not tightened, if any foreign matter (hair, sand grain, fiber, etc.) is stuck between the inverter and the gasket, if the gasket is damaged, or if the front cover or the wiring cover is damaged or deformed, the IPX5 waterproof performance and the IP5X dustproof performance are impaired. If any abnormalities are found on the front cover, wiring cover, or the gasket of the inverter, ask for an inspection and repair.
- Cable glands are important components to maintain the waterproof and dustproof performances. Be sure to use cable glands of the recommended size and shape or equivalent. The standard protective bushes cannot sufficiently maintain the IPX5 waterproof performance and the IP5X dustproof performance.
- If a cable gland is damaged or deformed, the IPX5 waterproof performance and the IP5X dustproof performance are impaired. If any abnormalities are found on the cable glands, ask the manufacturer of the cable glands for an inspection and repair.
- To maintain the waterproof and distproof performances of the inverter, daily and periodic inspections are recommended regardless of the presence or absence of abnormalities.
 - *1 IPX5 refers to protection of the inverter functions against water jets from any direction when about 12.5-liter water-3 is injected from a nozzle with an inside diameter of 6.3 mm from the distance of about 3 m for at least 3 minutes.
 - *2 IP5X refers to protection of the inverter functions and maintenance of safety when the inverter is put into a stirring device containing dust of 75 μm or smaller in diameter, stirred for 8 hours, and then removed from the device.
 - *3 Water here refers to fresh water at room temperature (5 to 35°C).
 *4 Indoor here refers to the environments that are not affected by climate conditions.

Precautions for use of IPM motor (MM-CF)

For using an IPM motor (MM-CF), also check the following precautions.

Safety instructions

• Do not use an IPM motor for an application where the motor is driven by the load and runs at a speed higher than the maximum motor speed.

Combination of motor and inverter

- The motor capacity is equal to or one rank lower than the inverter capacity. (It must be 0.4 kW or higher.)
 Using a motor with the rated current substantially lower than the inverter rated current will cause torque ripples, etc. and degrade the speed and torque accuracies.
 As a reference, select the motor with the rated motor current that
- As a reference, select the motor with the rated motor current that is about 40% or higher of the inverter rated current.
- Only one IPM motor can be connected to an inverter.
- An IPM motor cannot be driven by the commercial power supply.

Installation

- While power is ON or for some time after power-OFF, do not touch the motor since the motor may be extremely hot. Touching these devices may cause a burn.
- An outline dimension differs between MM-CF and a standard motor.
- Do not apply the load larger than the permissible load to the motor shaft. Doing so may lead to breakage of the shaft.
- Avoid places where the equipment is subjected to oil mist, dust, dirt, etc. for installation.
- When it is inevitable to install the equipment in such a place, take such measures as to provide a cover to the motor.
- Always use the motor at the specified surrounding air temperature. Increase in the motor temperature may cause the torque to decrease.
- When installing the motor with its shaft facing upward, take countermeasures on the machine side to avoid infiltration of oils from the gear box, etc.
- Select the appropriate cable clamping method to avoid bending stresses or stresses from its own weight at the cable joint section.
- For certain applications in which the motor moves, determine the cable bending radius based on the necessary bending life and the cable type.
- To prevent moving of the power supply cable coming out of the motor, take such measures as to fix the cable to the motor. Otherwise the cable may break.

Do not modify the connector, terminal, etc. at the end of the cable.

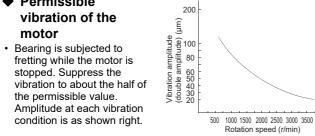
Earth (ground)

- To prevent an electric shock and to stabilize the potential of control circuit, always earth (ground) the motor and inverter.
- Earth (ground) the motor and inverter at one point. Connect the both earth (ground) terminals for the ground connection from the inverter side.

♦ Wiring

- Applying the commercial power supply to input terminals (U,V, W) of a motor will burn the motor. The motor must be connected with the output terminals (U,V, W) of the inverter.
- Do not install a magnetic contactor at the inverter's output side.
 An IPM motor is a motor with permanent magnets embedded inside. High voltage is generated at the motor terminals while the motor is running. Before wiring or inspection, confirm that the motor is stopped.

In an application, such a as fan or blower, where the motor is driven by the load, a low-voltage manual contactor must be connected at the inverter's output side, and wiring and inspection must be performed while the contactor is open. Otherwise an electric shock may be caused. The inverter power must be turned ON before closing the contacts of the contactor at the output side.


- Match the input terminals (U, V, W) of the motor and the output terminals (U, V, W) of the inverter when connecting.
- Keep the wiring length to 100 m or shorter when connecting an IPM motor .

Operation

- About 0.1 s (magnetic pole detection time) takes to start a motor after inputting a start signal.
- An IPM motor is a motor with embedded permanent magnets. Regression voltage is generated when the motor coasts at an instantaneous power failure or other incidents. The inverter's DC bus voltage increases if the motor coasts fast in this condition. When using the automatic restart after instantaneous power failure function, it is recommended to also use the regeneration avoidance operation to make startups stable.
- The relationship between speed and frequency setting is: Speed = 120 × frequency setting value / number of motor poles

Speed (r/min)	300	600	900	1200	1500	1800	2000	2400	2700	3000
MM-CF (8 poles) frequency setting (Hz)	20	40	60	80	100	120	133.33	160	180	200

♦ Permissible

Permissible load of the shaft

- Use the flexible coupling to decrease the shaft center gap to keep its radial load value within the permissible radial load of the shaft.
 When selecting a pulley, sprocket or timing belt, keep its radial
- load value within the permissible radial load value.
- Do not use a rigid coupling because it gives excessive bending force to the shaft and may break the shaft.

Motor	L (mm) *1	Permissible radial load (N)	Permissible thrust load (N)	
MM-CF52(C)(B) to152(C)(B)	55	980	490	
MM-CF202(C)(B) to352(C)(B) MM-CF502(C) to702(C)	79	2058	980	

1 For "L" in the table, refer to the figure below.

L: Distance from the flange mounting surface to the center of the load

Selection precautions

Inverter capacity selection

 When operating a special motor or multiple motors in parallel by one inverter, select the inverter capacity so that 1.05 times of the total of the rated motor current becomes less than the rated output current of the inverter.
 (Multiple PM motors cannot be connected to an inverter.)

• Starting torque of the motor

 The starting and acceleration characteristics of the motor driven by an inverter are restricted by the overload current rating of the inverter. In general, the torque characteristic has small value compared to when the motor is started by a commercial power supply. When a large starting torque is required, and torque boost adjustment, Advanced magnetic flux vector control, Real sensorless vector control, and vector control cannot generate the sufficient torque, select the HD rating, or increase both the motor and inverter capacities.

Acceleration/deceleration time

- The motor acceleration/deceleration time is decided by the torque generated by the motor, load torque, and moment of inertia (J) of load.
- The required time may increase when the torque limit function or stall prevention function operates during acceleration/ deceleration. In such a case, set the acceleration/decelerations time longer.
- To shorten the acceleration/deceleration time, increase the torque boost value (too large setting value may activate the stall prevention function, resulting in longer acceleration time at starting on the contrary). Alternatively, use Advanced magnetic flux vector control, Real sensorless vector control, or vector control, or select the larger inverter and motor capacities. To shorten the deceleration time, use an addition brake unit (FR-BU2) to absorb braking energy, power regeneration common converter (FR-CV), or power supply regeneration unit (MT-RC), etc.

Power transfer mechanisms (reduction gear, belt, chain, etc.)

 Caution is required for the low-speed continuous operation of the motor with an oil lubricated gear box, transmission, reduction gear, etc. in the power transfer mechanism. Such an operation may degrade the oil lubrication and cause seizing. On the other hand, the high-speed operation at more than 60 Hz may cause problems with the noise of the power transfer mechanism, life, or insufficient strength due to centrifugal force, etc. Fully take necessary precautions.

Instructions for overload operation

• When performing frequent starts/stops by the inverter, rise/fall in the temperature of the transistor element of the inverter will repeat due to a repeated flow of large current, shortening the life from thermal fatigue. Since thermal fatigue is related to the amount of current, the life can be increased by reducing current at locked condition, starting current, etc. Reducing current may extend the service life but may also cause torque shortage, which leads to a start failure. Adding a margin to the current can eliminate such a condition. For an induction motor, use an inverter of a higher capacity (up to two ranks for the ND rating). For an IPM motor, use an inverter and IPM motor of higher capacities.

Precautions on peripheral device selection

Selection and installation of molded case circuit breaker

Install a molded case circuit breaker (MCCB) on the power receiving side to protect the wiring at the inverter/the converter unit input side. Select an MCCB according to the inverter power supply side power factor, which depends on the power supply voltage, output frequency and load. Refer to **page 215**. Especially for a completely electromagnetic MCCB, a slightly large capacity must be selected since its operation characteristic varies with harmonic currents. (Check the reference material of the applicable breaker.) As an earth leakage circuit breaker, use the Mitsubishi Electric earth leakage circuit breaker designed for harmonics and surge suppression. (Refer to **page 214**.) When installing a molded case circuit breaker on the inverter output side, contact the manufacturer of each product for selection.

Handling of the input side magnetic contactor (MC)

For the operation using external terminals (using terminal STF or STR), install the input-side magnetic contactor to prevent accidents due to automatic restart when the power is restored after power failures such as an instantaneous power failure, or for safety during maintenance works. Do not use this magnetic contactor for frequent starting/stopping of the inverter. (The switching life of the converter part is about 1 million times.) In the operation by parameter unit, the automatic restart after power restoration is not performed and the magnetic contactor cannot be used to start the motor. The input-side magnetic contactor can stop the motor. However, the regenerative brake of the inverter does not operate, and the motor coasts to a stop.

Handling of the output side magnetic contactor (MC)

- Switch the MC between the inverter and motor only when both the inverter and motor are at a stop. When the magnetic contactor is turned ON while the inverter is operating, overcurrent protection of the inverter and such will activate. When an MC is provided to switch to a commercial power supply, for example, it is recommended to use the commercial power supply-inverter switchover function Pr.135 to Pr.139.
- Do not install a magnetic contactor at the inverter's output side when using a PM motor.

Installation of thermal relay

In order to protect the motor from overheating, the inverter has an electronic thermal O/L relay. However, install an external thermal overcurrent relay (OCR) between the inverter and motors to operate several motors or a multi-pole motor with one inverter. In

this case, set 0 A to the electronic thermal O/L relay setting of the inverter. For the external thermal overcurrent relay, determine the setting value in consideration of the current indicated on the motor's rating plate and the line-to-line leakage current. (Refer to page 221.)

Self cooling ability of a motor reduces in the low-speed operation. Installation of a thermal protector or a use of a motor with built-in thermistor is recommended.

Output side measuring instrument

When the inverter-to-motor wiring length is long, especially for the 400 V class, small-capacity models, the meters and CTs may generate heat due to line-to-line leakage current. Therefore, choose the equipment which has enough allowance for the current rating.

When measuring and displaying the output voltage and output current of the inverter, use of terminals AM and 5 output function of the inverter is recommended.

Disuse of power factor improving capacitor (power factor correction capacitor)

The power factor improving capacitor and surge suppressor on the inverter output side may be overheated or damaged by the harmonic components of the inverter output. Also, since an excessive current flows in the inverter to activate overcurrent protection, do not provide a capacitor and surge suppressor. To improve the power factor, use an AC reactor (on **page 191**), a DC reactor (on **page 192**), or a high power factor converter (on **page 204**).

Connection between the converter unit and the inverter

- Perform wiring so that the commands sent from the converter unit are transmitted to the inverter without fail. Incorrect connection may damage the converter unit and the inverter.
- For the wiring length, refer to the table below.

Total wiring length	Across terminals P and P and terminals N and N	50 m or lower
	Other signal cables	30 m or lower

• For the cable gauge of the cable across the main circuit terminals P/+ and N/- (P and P, N and N), refer to **page 216**.

• Electrical corrosion of the bearing

When a motor is driven by the inverter, axial voltage is generated on the motor shaft, which may cause electrical corrosion of the bearing in rare cases depending on the wiring, load, operating conditions of the motor or specific inverter settings (high carrier frequency and EMC filter ON). Contact your sales representative to take appropriate countermeasures for the motor. The following shows examples of countermeasures for the

The following shows examples of countermeasures for the inverter.

- Decrease the carrier frequency.
- Turn OFF the EMC filter.
- Provide a common mode choke on the output side of the inverter.*1

(This is effective regardless of the EMC filter ON/OFF connector setting.)

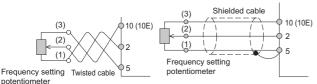
*1 Recommended common mode choke: FT-3KM F series FINEMET[®] common mode choke cores manufactured by Hitachi Metals, Ltd.

FINEMET is a registered trademark of Hitachi Metals, Ltd.

13

Cable gauge and wiring distance

If the wiring distance is long between the inverter and motor, during the output of a low frequency in particular, use a large cable gauge for the main circuit cable to suppress the voltage drop to 2% or less. (The table on **page 215** indicates a selection example for the wiring length of 20 m.)


Especially for long-distance wiring or wiring with shielded cables, the inverter may be affected by a charging current caused by stray capacitances of the wiring, leading to an incorrect activation of the overcurrent protective function. Refer to the maximum wiring length shown in the following table. When multiple motors are connected, use the total wiring length shown in the table or shorter (100 m or shorter under vector control and PM sensorless vector control.)

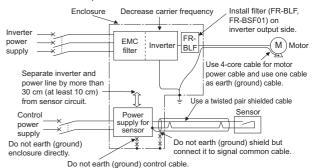
Pr.72 setting (carrier frequency)	FR-A820- 00046(0.4K), FR-A840- 00023(0.4K)	FR-A820- 00077(0.75K), FR-A840- 00038(0.75K)	FR-A820-00105(1.5K) or higher, FR-A840- 00052(1.5K) or higher
2 (2 kHz) or lower	300 m	500 m	500 m
3 (3 kHz) or higher	200 m	300 m	500 m

When the operation panel is installed away from the inverter and when the parameter unit is connected, use a recommended connection cable.

For the remote operation using analog signals, keep the control cable distance between the operation signal transmitter and the inverter to 30 m or less. Also, to prevent induction from other devices, keep the wiring away from the power circuits (main circuit and relay sequential circuit).

When the frequency setting is performed using the external potentiometer, not using the parameter unit, use a shielded or twisted cable as shown in the figure below. Connect the shield cable to terminal 5, not to the earth (ground).

Earth (ground)


When the inverter is set for the low acoustic noise operation, the leakage current increases compared to in the normal operation due to the high speed switching operation. Always earth (ground) the inverter, the converter unit, and the motor. Also, always use the earth (ground) terminal of the inverter/the converter unit for earthing (grounding). (Do not use a case or chassis.)

Electromagnetic interference (EMI)

For the low acoustic noise operation with high carrier frequency, electromagnetic noise tends to increase. Take countermeasures by referring to the following examples. Depending on an installation condition, noise may affect the inverter also in the normal operation (initial status).

- Decrease the carrier frequency (**Pr.72**) setting to lower the EMI level.
- For countermeasures against the noise in AM radio broadcasting or malfunction of sensors, turn ON the EMC filter. (For the switching method, refer to the Instruction Manual.)
- For effective reduction of induction noise from the power cable of the inverter/the converter unit, secure the distance of 30 cm (at least 10 cm) from the power line and use a shielded twisted pair cable for the signal cable. Do not earth (ground) the shield, and connect the shield to a common terminal by itself.

EMI measure example

Ieakage current

Capacitances exist between the inverter/the converter unit I/O cables and other cables or the earth, and within the motor, through which a leakage current flows. Since its value depends on the static capacitances, carrier frequency, etc., low acoustic noise operation at the increased carrier frequency of the inverter will increase the leakage current. Therefore, take the following countermeasures. Select the earth leakage circuit breaker according to its rated sensitivity current, independently of the carrier frequency setting.

To-earth (ground) leakage currents

Туре	Influence and countermeasure
Influence and countermeasure	 Leakage currents may flow not only into the inverter/the converter unit's own line but also into the other lines through the earthing (grounding) cable, etc. These leakage currents may operate earth leakage circuit breakers and earth leakage relays unnecessarily. Countermeasure If the carrier frequency setting is high, decrease the Pr.72 PWM frequency selection setting. However, the motor noise increases. Selecting Pr.240 Soft-PWM operation selection makes the sound inoffensive. By using earth leakage circuit breakers designed for harmonic and surge suppression in the inverter's own line and other line, operation can be performed with the carrier frequency kept high (with low noise).
Transmission path	Power supply

Line-to-line leakage current

Influence and countermeasure
 Line-to-line leakage current flows through the capacitance between the inverter/the converter unit output lines. Harmonic component of the leaked current may cause unnecessary operation of an external thermal relay. Long wiring length (50 m or longer) for the 400V class small capacity models (7.5 kW or lower) will increase the rate of leakage current against the rated motor current. In such a case, an unnecessary operation of the external thermal relay may be more liable to occur. Countermeasure Use Pr.9 Electronic thermal O/L relay. If the carrier frequency setting is high, decrease the Pr.72 PWM frequency selection setting. However, the motor noise increases. Selecting Pr.240 Soft-PWM operation selection makes the sound inoffensive. To protect motor securely without being subject to the influence of the line-to-line leakage current, direct detection of the motor temperature using a temperature sensor is recommended.
Power Supply MCCB MC Inverter/ Motor Motor Motor

Harmonic Suppression Guidelines

Inverters have a converter section (rectifier circuit) and generate a harmonic current.

Harmonic currents flow from the inverter to a power receiving point via a power transformer. The Harmonic Suppression Guidelines was established to protect other consumers from these outgoing harmonic currents.

The three-phase 200 V input specifications 3.7 kW or lower were previously covered by the "Harmonic Suppression Guidelines for Household Appliances and General-purpose Products" and other models were covered by the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage". However, the general-purpose inverter has been excluded from the target products covered by the "Harmonic Suppression Guidelines for Household Appliances and General-purpose Products" in January 2004 and the "Harmonic Suppression Guideline for Household Appliances and General-purpose Products" was repealed on September 6, 2004.

All capacity and all models of general-purpose inverter used by specific consumers are now covered by the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage".

- "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage"
 This guideline sets the maximum values of outgoing harmonic currents
- generated from a high-voltage or specially high-voltage receiving consumer who will install, add or renew harmonic generating equipment. If any of the maximum values is exceeded, this guideline requires that consumer to take certain suppression measures.

The users who are not subjected to the above guidelines do not need follow the guidelines, but the users are recommended to connect a DC reactor and an AC reactor as usual. Compliance with the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage"

Input power	Target capacity	Countermeasure
Three- phase 200 V		Confirm the compliance with the "Harmonic Suppression Guidelines for Consumers Who Receive High Voltage or Special High Voltage" published in September 1994 by the Ministry of International Trade and Industry (the present Japanese Ministry of Economy, Trade and
Three- phase 400 V	All capacities	Industry). Take countermeasures if required. Use the following materials as reference to calculate the power supply harmonics. Reference materials • "Harmonic Suppression Measures of the General-purpose Inverter" January 2004, Japan Electrical Manufacturers' Association • "Calculation Method of Harmonic Current of the General-purpose Inverter Used by Specific Consumers" JEM-TR201 (Revised in December 2003), Japan Electrical Manufacturers' Association

For compliance to the "Harmonic Suppression Guideline of the General-purpose Inverter (Input Current of 20A or Less) for Consumers Other Than Specific Consumers" published by JEMA

Input power	Target capacity	Measures
Three- phase 200 V	3.7 kW or lower	Connect the AC reactor or DC reactor recommended in the Catalogs and Instruction Manuals. Reference materials • "Harmonic Suppression Guideline of the General-purpose Inverter (Input Current of 20A or Less)" JEM-TR226 (Published in December 2003), Japan Electrical Manufacturers' Association

Calculation of outgoing harmonic current

Outgoing harmonic current = fundamental wave current (value converted from received power voltage) × operation ratio × harmonic content

- Operation ratio: Operation ratio = actual load factor × operation time ratio during 30 minutes
- Harmonic content: Found in the table below.
- Harmonic contents (values when the fundamental wave current is 100%)

Reactor	5th	7th	11th	13th	17th	19th	23rd	25th
Not used	65	41	8.5	7.7	4.3	3.1	2.6	1.8
Used (AC side)	38	14.5	7.4	3.4	3.2	1.9	1.7	1.3
Used (DC side)	30	13	8.4	5.0	4.7	3.2	3.0	2.2
Used (AC, DC sides)	28	9.1	7.2	4.1	3.2	2.4	1.6	1.4

Rated capacities and outgoing harmonic currents when driven by inverter

Applied motor (kW)		mental current \)	Fundamental wave current converted from 6.6 kV	Rated capacity (kVA)		fro		harmonic current converted from 6.6 kV (mA) ctor, 100% operation ratio)					
()	200 V	400 V	(mA)	(5th	7th	11th	13th	17th	19th	23rd	25th	
0.4	1.61	0.81	49	0.57	31.85	20.09	4.165	3.773	2.107	1.519	1.274	0.882	
0.75	2.74	1.37	83	0.97	53.95	34.03	7.055	6.391	3.569	2.573	2.158	1.494	
1.5	5.50	2.75	167	1.95	108.6	68.47	14.20	12.86	7.181	5.177	4.342	3.006	
2.2	7.93	3.96	240	2.81	156.0	98.40	20.40	18.48	10.32	7.440	6.240	4.320	
3.7	13.0	6.50	394	4.61	257.1	161.5	33.49	30.34	16.94	12.21	10.24	7.092	
5.5	19.1	9.55	579	6.77	376.1	237.4	49.22	44.58	24.90	17.95	15.05	10.42	
7.5	25.6	12.8	776	9.07	504.4	318.2	65.96	59.75	33.37	24.06	20.18	13.97	
11	36.9	18.5	1121	13.1	728.7	459.6	95.29	86.32	48.20	34.75	29.15	20.18	
15	49.8	24.9	1509	17.6	980.9	618.7	128.3	116.2	64.89	46.78	39.24	27.16	
18.5	61.4	30.7	1860	21.8	1209	762.6	158.1	143.2	79.98	57.66	48.36	33.48	
22	73.1	36.6	2220	25.9	1443	910.2	188.7	170.9	95.46	68.82	57.72	39.96	
30	98.0	49.0	2970	34.7	1931	1218	252.5	228.7	127.7	92.07	77.22	53.46	
37	121	60.4	3660	42.8	2379	1501	311.1	281.8	157.4	113.5	95.16	65.88	
45	147	73.5	4450	52.1	2893	1825	378.3	342.7	191.4	138.0	115.7	80.10	
55	180	89.9	5450	63.7	3543	2235	463.3	419.7	234.4	169.0	141.7	98.10	

Applied motor (kW)	Fundamental wave current (A)		Fundamental wave current converted from 6.6 kV	Rated capacity (kVA)			fror	n 6.6	curr kV (I 00%	mA)		
(,	200 V	400 V	(mA)	(5th	7th	11th	13th	17th	19th	23rd	25th
75	245	123	7455	87.2	2237	969	626	373	350	239	224	164
90	293	147	8909	104	2673	1158	748	445	419	285	267	196
110	357	179	10848	127	3254	1410	911	542	510	347	325	239
132	-	216	13091	153	3927	1702	1100	655	615	419	393	288
160	-	258	15636	183	4691	2033	1313	782	735	500	469	344
220	-	355	21515	252	6455	2797	1807	1076	1011	688	645	473
250	-	403	24424	286	7327	3175	2052	1221	1148	782	733	537
280	-	450	27273	319	8182	3545	2291	1364	1282	873	818	600
315	-	506	30667	359	9200	3987	2576	1533	1441	981	920	675
355	-	571	34606	405	10382	4499	2907	1730	1627	1107	1038	761
400	-	643	38970	456	11691	5066	3274	1949	1832	1247	1169	857
450	-	723	43818	512	13146	5696	3681	2191	2060	1402	1315	964
500	-	804	48727	570	14618	6335	4093	2436	2290	1559	1462	1072
560	-	900	54545	638	16364	7091	4582	2727	2564	1746	1636	1200
630	-	1013	61394	718	18418	7981	5157	3070	2886	1965	1842	1351

Conversion factors

Classification	Circ	Conversion coefficient Ki	
		Without reactor	K31 = 3.4
	(Capacitor	With reactor (AC side)	K32 = 1.8
3		With reactor (DC side)	K33 = 1.8
	smoothing)	With reactors (AC, DC sides)	K34 = 1.4
5	Self-excitation three-phase bridge	When a high power factor converter is used	K5 = 0

• List of applicable inverter models by rating (motor capacity \rightarrow inverter model)

For the combinations within the thick boarders, always connect a DC reactor (FR-HEL), which is available as an option.

◆ 200 V class (model: FR-A820-[])

Motor	DC reactor	SLD) (superli	ght load)		LD (light	load)	ND (no	rmal load	, initial value)	ŀ	ID (heavy	/ load)
capacity (kW)*1	FR-HEL-[]	Мс	del	Rated current (A)	M	odel	Rated current (A)	M	odel	Rated current (A)	Mo	odel	Rated current (A)
0.2	0.4K*2							0.4K	00046	3	0.4K	00046	1.5
0.4	0.4K	0.4K	00046	4.6	0.4K	00046	4.2	0.41	00040	5	0.75K	00077	3
0.75	0.75K							0.75K	00077	5	1.5K	00105	5
1.5	1.5K	0.75K	00077	7.7	0.75K	00077	7	1.5K	00105	8	2.2K	00167	8
2.2	2.2K	1.5K	00105	10.5	1.5K	00105	9.6	2.2K	00167	11	3.7K	00250	11
3.7	3.7K	2.2K	00167	16.7	2.2K	00167	15.2	3.7K	00250	17.5	5.5K	00340	17.5
5.5	5.5K	3.7K	00250	25	3.7K	00250	23	5.5K	00340	24	7.5K	00490	24
7.5	7.5K	5.5K	00340	34	5.5K	00340	31	7.5K	00490	33	11K	00630	33
11	11K	7.5K	00490	49	7.5K	00490	45	11K	00630	46	15K	00770	46
15	15K	11K	00630	63	11K	00630	58	15K	00770	61	18.5K	00930	61
18.5	18.5K	15K	00770	77	15K	00770	70.5	18.5K	00930	76	22K	01250	76
22	22K	18.5K	00930	93	18.5K	00930	85	22K	01250	90	30K	01540	90
30	30K	22K	01250	125	22K	01250	114	30K	01540	115	37K	01870	115
37	37K	30K	01540	154	30K	01540	140	37K	01870	145	45K	02330	145
45	45K	37K	01870	187	37K	01870	170	45K	02330	175	55K	03160	175
55	55K	45K	02330	233	45K	02330	212	55K	03160	215	75K	03800	215
75	75K	55K	03160	316	55K	03160	288	75K	03800	288	90K	04750	288
90	90K	751/	00000	200	75K	03800	346	90K	04750	346	-	1-	-
110	110K	75K	03800	380	90K	04750	432	-	-	-	-	-	-
132	110K*3	90K	04750	475	-	-	-	-	-	-	-	-	-

◆ 400 V class (model: FR-A840-[])

Motor	DC reactor	SLD	(superlig	ght load)		LD (light	load)	ND (no	rmal load,	initial value)	ŀ	ID (heavy	/ load)
capacity (kW)*1	FR-HEL-[]	Мо	del	Rated current (A)	Мо	del	Rated current (A)	Mo	odel	Rated current (A)	Мо	del	Rated current (A)
0.2	H0.4K*2							0.4K	00023	1.5	0.4K	00023	0.8
0.4	H0.4K	0.4K	00023	2.3	0.4K	00023	2.1	0.4K	00023	1.5	0.75K	00038	1.5
0.75	H0.75K							0.75K	00038	2.5	1.5K	00052	2.5
1.5	H1.5K	0.75K	00038	3.8	0.75K	00038	3.5	1.5K	00052	4	2.2K	00083	4
2.2	H2.2K	1.5K	00052	5.2	1.5K	00052	4.8	2.2K	00083	6	3.7K	00126	6
3.7	H3.7K	2.2K	00083	8.3	2.2K	00083	7.6	3.7K	00126	9	5.5K	00170	9
5.5	H5.5K	3.7K	00126	12.6	3.7K	00126	11.5	5.5K	00170	12	7.5K	00250	12
7.5	H7.5K	5.5K	00170	17	5.5K	00170	16	7.5K	00250	17	11K	00310	17
11	H11K	7.5K	00250	25	7.5K	00250	23	11K	00310	23	15K	00380	23
15	H15K	11K	00310	31	11K	00310	29	15K	00380	31	18.5K	00470	31
18.5	H18.5K	15K	00380	38	15K	00380	35	18.5K	00470	38	22K	00620	38
22	H22K	18.5K	00470	47	18.5K	00470	43	22K	00620	44	30K	00770	44
30	H30K	22K	00620	62	22K	00620	57	30K	00770	57	37K	00930	57
37	H37K	30K	00770	77	30K	00770	70	37K	00930	71	45K	01160	71
45	H45K	37K	00930	93	37K	00930	85	45K	01160	86	55K	01800	86
55	H55K	45K	01160	116	45K	01160	106	55K	01800	110	75K	02160	110
75	H75K	55K	01800	180	55K	01800	144	75K	02160	144	90K	02600	144
90	H90K	551	01000		75K	02160	180	90K	02600	180	110K	03250	180
110	H110K	75K	02160	216	90K	02600	216	110K	03250	216	132K	03610	216
132	H132K	90K	02600	260	110K	03250	260	132K	03610	260	160K	04320	260
160	H160K	110K	03250	325	132K	03610	325	160K	04320	325	185K	04810	325
185	H185K	132K	03610	361	160K	04320	361	185K	04810	361	220K	05470	361
220	H220K	160K	04320	432	185K	04810	432	220K	05470	432	250K	06100	432
250	H250K	185K	04810	481	220K	05470	481	250K	06100	481	280K	06830	481
280	H280K	220K	05470	547	250K	06100	547	280K	06830	547	-	-	-
315	H315K	250K	06100	610	280K	06830	610	-	-	-	-	-	-
355	H355K	280K	06830	683	-	-	-	-	-	-	-	-	-

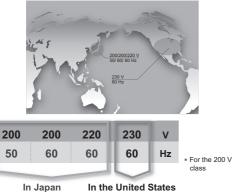
◆ 400 V class (model: FR-A842-[])

Motor capacity	Converter unit	SLD	(superli	ght load)		LD (light	load)	ND (noi	rmal load,	initial value)	H	ID (heavy	/ load)
(kW)*1	FR-CC2-[]	Мо	del	Rated current (A)	Мо	odel	Rated current (A)	Мо	odel	Rated current (A)	Mo	del	Rated current (A)
280	H315K	-	-	-	-	-	-	-	-	-	315K	07700	547
315	H315K	-	-	-	-	-	-	315K	07700	610	355K	08660	610
355	H355K	-	-	-	315K	07700	683	355K	08660	683	400K	09620	683
400	H400K	315K	07700	770	355K	08660	770	400K	09620	770	450K	10940	770
450	H450K	355K	08660	866	400K	09620	866	450K	10940	866	500K	12120	866
500	H500K	400K	09620	962	450K	10940	962	500K	12120	962	-	-	-
560	H560K	450K	10940	1094	500K	12120	1094	-	-	-	-	-	-
630	H630K	500K	12120	1212	-	-	-	-	-	-	-	-	-

Indicates the maximum capacity applicable with the Mitsubishi Electric 4-pole standard motor. The power factor may be slightly lower. The FR-HEL-110K supports the 200 V class 132 kW motor. *1

*1 *2 *3

Overload current rating


SLD	110% 60 s, 120% 3 s (inverse-time characteristics) at surrounding air temperature of 40°C
LD	120% 60 s, 150% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C
ND	150% 60 s, 200% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C
HD	200% 60 s, 250% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C

High-performance energy-saving motor superline premium series SF-PR

One motor conforms to the power supply in Japan and the United States.

- The SF-PR series conform to the Top Runner Standard of the "Act on the Rational Use of Energy (energy saving law)" started on April 1, 2015.
- The 230 V 60 Hz motor also conforms to the Energy Independence and Security Act (EISA).

In the United States

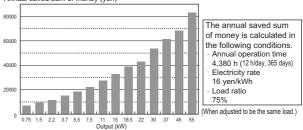
Interchangeable installation size

Replacement can be smoothly performed because the installation size (frame number) is compatible with our standard efficiency motor SF-JR series

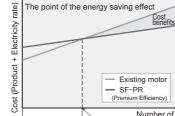
- It is possible to use a power distribution control equipment (thermal relay and breaker), which is the same as a conventional model
- For the frame number 180 LD or higher and some models of the 6-pole product. *1 the total length or diametrical dimension is greatly different
- *2 The frame number is different from 1.5 kW6P (112M), 2.2 kW6P(132S) of the SF-HR models
- When replacing the SF-JR to the SF-PR, it is required to consider upgrading the contactor to secure the same electric durability as using the SF-JR because the electric durability of the contactor may reduce by about 30%. Besides, when replacing the SF-JR to the SF-PR, the existing thermal relay may trip depending on the operating conditions (long starting time). As a countermeasure, conside "Adjusting the heater set value of the thermal" or "Adopting the thermal with a saturated reactor ", etc.
- If the breaker NF400-SW manufactured by Mitsubishi Electric is used with the 55 kW motor, change the breaker. (Change the rated current of the breaker NF400-SW from 300 A to 350 A.)

We have released the superline premium series SF-PR models compatible with the Top Runner Standard in Japan, which is equivalent with IE3 premium efficiency for three-phase motors, and with the Energy Independence and Security Act (EISA) in the United States

The SF-PR has achieved the efficiency class IE3 with the same dimensions as those of conventional models using our unique technology of the steel plate frame and new core materials. It maintains interchangeability with our standard efficiency motor SF-JR and easy replacement becomes possible.


By adopting a high-efficiency motor, energy savings in plant facilities and reduction of electricity consumption are expected, as well as the effects of recovering the investment cost.

Introduction effects of the superline premium series SF-PR


The SF-PR motor conforms to the Top Runner Standard (IE3 equivalent), which remarkably reduces its operation cost (electricity charges) and greatly contributes minimization of TCO (Total Cost Ownership)

Trial calculation example of an annual saved sum of money (at upgrading the motor from energy-efficiency class IE1 to IE3) Motor with 4-poles 200 V50 Hz

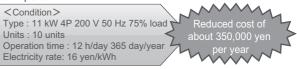
Annual saved sum of money (yen)

· Economic efficiency on an energy saving effect

Reduction in the electricity charges through the energy saving enables the investment cost to be recovered, and after that. the energy saving effect will bring some profit through power saving. The annual saved sum of money can be calculated according to the following formula. The longer operation time in an application, the more money can be saved.

Number of years of use Breakeven point

Recovery period for


the amount of a price

increase

<Calculation formula>

When replacing our standard motor SF-JR with the SF-PR on the ventilation fan in plant

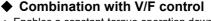
Trial calculation results in replacing the SF-JR with the SF-PR with improved efficiency by 5% under the same conditions of the load factor, operation time, and electricity charges, etc.

14

♦ Lineup

۰N	/lodel	SF	-	PR	V	0	В	- k	K R										_	
	Svr	nbol Stru	ucture	Symbo		sure type	Symbo	l Ser	ies	Symbo	Install	ation	Symbol	Classifi	cation	Symbo	With or	· without	Symbol	Country code
		S Superli	ne series	F		enclosed		Premiur	n series ate frame		Foot mo type	unting	None O (Indoor typ Outdoor ty	pe (IP44)	None	Withou	ake It brake	None	Japan and the U.S.A.
۰A	vailable	e models	6							F	Vertical Flange		Ρ,	Dust-proof waterproof	and type(IP55)	В	With	brake	UL KR EU	US UL standard Korea Europe
[т	/pe						To	tally-encl	losed fan	-cooled t	уре							CN	China
	1)	he	Foot	mounting	g type	V	ertical ty	ре	F	lange ty	ре	0	Dutdoor t	уре	Dustproc	of/waterpr	oof type			Offinia
	Mo	odel		SF-PR			SF-PRV	'		SF-PRF			SF-PR	2		SF-PRP				
	Number	of poles	2P	4P	6P	2P	4P	6P	2P	4P	6P	2P	4P	6P	2P	4P	6P			
		0.75	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
		1.5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
		2.2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
		5.5	•	•	•	•	•	•	•	•	•	•		•	•	•	•			
		7.5																		
		11	•	•	•	•	•	•	•			•	•		•	•	•			
	Output	15	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
	(kW)	18.5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
		22	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	The v	ertical tv	pe and the flange
		30	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	•			available for the
		37	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			and the dustproof/
		45	•	•	•	•	•	•	•	•	-	•	•	•	•	•	•			
l		55	•	•	-	•	•	-	-	-	-	•	•	-	•	•	-	water	proof typ	be.
															•	: Availabl	e model			

1 Compatible Motors


The SF-PR best matches Mitsubishi Electric inverters

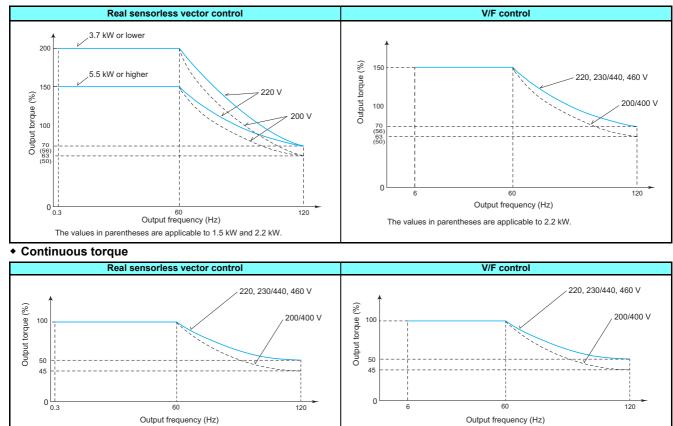
- This enables a constant-torque operation in the low-speed range. (expanding the constant-torque range)
- Combining with the standard motor SF-PR enables a constant-torque operation in the low-speed range.
- The SF-PR has superior performance to the SF-HRCA.
- The 400 V class motors are insulation-enhanced motors as standard.

Combination with Advanced magnetic flux vector control


Enables a constant-torque operation down to 0.5 Hz in a super low-speed range.

Expanding the constant-torque continuous operation range enables 0.5 to 60 Hz (1: 120) operation.

Enables a constant-torque operation down to 6 Hz in a low-speed range.


Expanding the constant-torque continuous operation range enables 6 to 60 Hz (1: 10) operation.

60 Hz torque reference indicates that the rated motor torque is 100% during 60 Hz operation.

Motor torque ۲

The following shows torque characteristics of the high-performance, energy-saving motor (SF-PR, 4-pole) in combination with an inverter with the ND or HD rating. The overload capacity decreases for the LD or SLD rating. Observe the specified range of the inverter. Maximum short-time torque

Mitsubishi Electric high-performance energy-saving motor with encoder superline premium series SF-PR-SC

◆ Fast-response / high-accuracy vector control

Fast-response and high-accuracy vector control can be performed by the use in combination with the general-purpose FR-A800 inverter, plug-in option (FR-A8AP/A8AL), and control terminal option (FR-A8TP).

Wide range of constant-torque characteristics

By selecting vector control, constant-torque continuous operation can be performed in the range from 0 Hz to 60 Hz (zero speed control and servo lock are available).

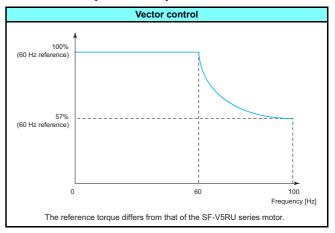
Energy saving / CO₂ emission reduction

The premium efficiency motor with encoder (compatible with IE3) meets the Top Runner Standard in Japan and the Energy Independence and Security Act (EISA) in the United States.

Compatibility with the inverter

Lineup

The motor is used in combination with an inverter of the same capacity.


Improved environmental resistance

- Environmental resistance was improved due to the change from the fan cooled type to the blower cooled type. The IP55 compatible motor with an encoder is now also available.
- With the wire-saving design, improved reliability can be obtained.
- Anti-corrosive coating (type 3) is also available.

Motor torque

- Excellent speed accuracy Speed fluctuation ratio: ±0.01% (for power driving)
- Wide range of speed control Speed control range: 1:1800 (for power driving)

Continuous operation torque

Model S F - P R F O B - S C 7 **K** 4 P H Α hod Symbol Classification Symbol Classification bol Output Symbol Output Symbol Classification bol Installation m None Foot mounting type None Indoor type (IP44) None Without brake 1.5 kW 18K 18.5 kW None 200 V class Without Flange type 0 Outdoor type (IP44) В With brake 2K 2.2 kW 22K 22 kW н 400 V class Thermostat Dustproof/water type (IP55) 3.7 kW 30K 30 kW ЗK The Р 5K 5.5 kW 37K 37 kW 7K 7.5 kW 45K 45 kW 11K 11 kW 55K 55 kW 15K 15 kW

Application to standard motors

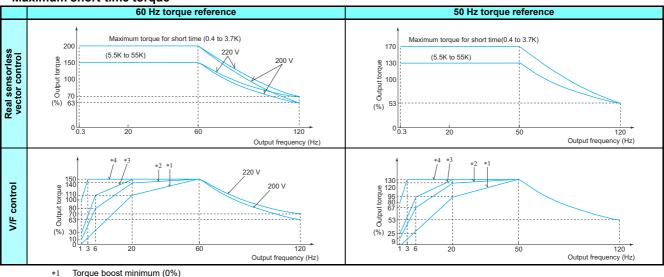
Motor loss and temperature rise

The motor operated by the inverter has a limit on the continuous operating torque since it is slightly higher in temperature rise than the one operated by a commercial power supply. At a low speed, reduce the output torque of the motor since the cooling effect decreases. When 100% torque is needed continuously at low speed. consider using a constant-torgue motor.

Torque characteristic

The motor operated by the inverter may be less in motor torque (especially starting torque) than the one driven by the commercial power supply. It is necessary to fully check the load torque characteristic of the machine.

Vibration


The machine-installed motor operated by the inverter may be slightly greater in vibration than the one driven by the commercial power supply. The possible causes of vibration are as follows.

- Vibration due to imbalance of the rotator itself including the machine
- Resonance due to the natural oscillation of the mechanical system. Caution is required especially when the machine used at constant speed is operated at variable speed. The frequency jump function allows resonance points to be avoided during operation. (During acceleration/deceleration, the frequency within the setting range is passed through.) An effect is also produced if Pr.72 PWM frequency selection is changed. When a two-pole motor is operated at higher than 60 Hz, caution should be taken since such an operation may cause abnormal vibration.

Motor torque

When the Mitsubishi Electric standard squirrel cage motor (SF-JR, 4-pole) and inverter of the same capacity are used, the torque characteristics are as shown below. It is assumed that the motor is used in combination with an inverter with the ND or HD rating. The overload capacity decreases when the LD or SLD rating is selected. Observe the specified range of the inverter.

Maximum short-time torque


Torque boost standard (initial value)

*2 *3

Torque boost large 10%: FR-A820-00046(0.4K), FR-A820-00077(0.75K), FR-A840-00023(0.4K), FR-A840-00038(0.75K)

- 7%: FR-A820-00105(1.5K) to FR-A820-00250(3.7K), FR-A840-00052(1.5K) to FR-A840-00126(3.7K)
- 6%: FR-A820-00340(5.5K), FR-A820-00490(7.5K), FR-A840-00170(5.5K), FR-A840-00250(7.5K)
- 4%: FR-A820-00630(11K) or higher, FR-A840-00310(11K) or higher
- *4 Torque boost adjustment (3.7 kW or lower) The maximum short-time torque indicates the maximum torque characteristics within 60 s.
- Under Real sensorless vector control, 200% (150%) torque (60 Hz torque reference) is output at 0.3 Hz operation.
- A 60 Hz torque reference indicates that the rated torque of the motor running at 60 Hz is 100%, and a 50 Hz torque reference indicates that the rated torque of the motor running at 50 Hz is 100%
 - Under V/F control, all of SF-JR 2-pole, 4-pole, and 6-pole motors have the same torque characteristics.

Continuous torque (Real sensorless vector control)

A general-purpose squirrel cage motor must be used at lower continuous operating torque in rated operation as shown in the chart since the cooling capability of the fan installed on the rotor reduces at a lower speed. (Instantaneous torque occurs.)

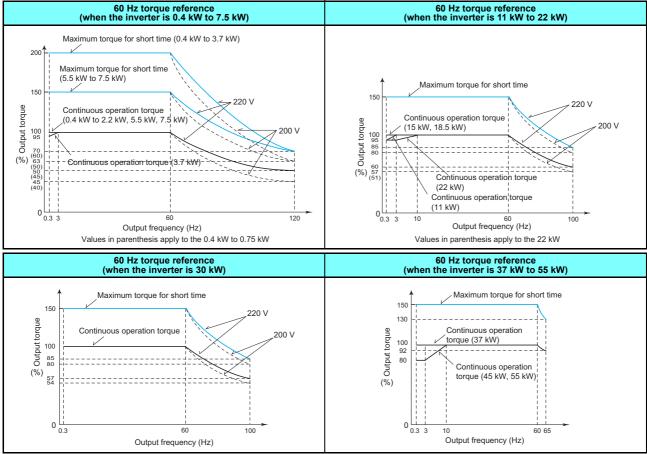
- The toque with 200 or 220 V at 60 Hz or 200 V at 50 Hz in the chart indicates a motor torque reference (base frequency set in Pr.3 of the inverter) and is not the frequency of the power supply. In a 50 Hz power supply area, the 60 Hz setting can be set.
- When continuously operating a motor with the 50 Hz torque reference setting, set the load torque to 85% or lower.

14

Application to constant-torque motors

SF-HRCA type

- Continuous operation even at low speed of 0.3 Hz is possible (when using Real sensorless vector control).
 For the 37 kW or lower (except for 22 kW), load torque is not needed to be reduced even at a low speed and constant torque (100% torque) continuous operation is possible within the range of speed ratio 1/20 (3 to 60 Hz).
 (The characteristic of motor running at 60 Hz or higher is that
- output torque is constant.)
- Installation size is the same as that of the standard motor.
 Note that operation characteristic in the chart below cannot in the standard motor.
- Note that operation characteristic in the chart below cannot be obtained if V/F control is used.


Standard specifications (indoor type)

Output (kW)	Number of poles	Frequency range	Common specification
0.4			
0.75			
1.5			
2.2		3 to 120 Hz	
3.7			Base frequency 60 Hz Rotation direction (CCW)
5.5			Counterclockwise when viewed
7.5			from the motor end
11	4		 Lead wire 3.7 kW or lower: 3 wires
15			5.5 kW or higher: 6 or 12 wires
18.5		3 to 100 Hz	 Surrounding air temperature: 40°C or lower
22			The protective structure is IP44.
30			
37			
45		3 to 65 Hz	
55			

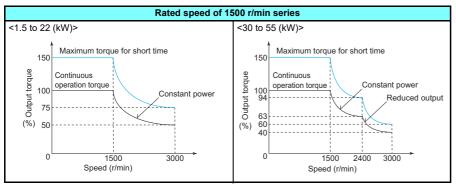
Motor torque

It is assumed that the motor is used in combination with an inverter with the ND or HD rating. The overload capacity decreases when the LD or SLD rating is selected. Observe the specified range of the inverter.

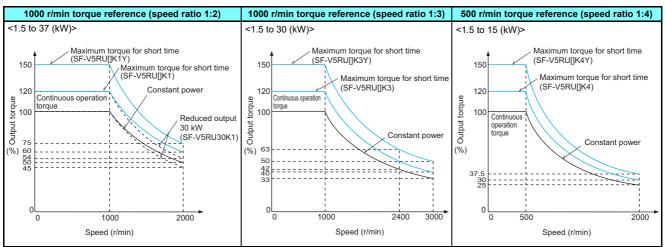
· Continuous rated range of use (Real sensorless vector control)

The maximum short-time torque indicates the maximum torque characteristics within 60 s. For the motor constant under Real sensorless vector control, please contact your sales representative.

Application to vector control dedicated motors (SF-V5RU) (55 kW or lower)


For performing vector control, the FR-A8AP/FR-A8TP (vector control compatible option) is required. When the FR-A8TP is not used, a 12 V or 24 V power supply is required as the power supply for the encoder of the SF-V5RU. (When the FR-A8TP is used, the 24 V power supply of the FR-A8TP can be used for the encoder of the SF-V5RU.)

♦ Motor torque


When the vector control dedicated motor (SF-V5RU) and inverter are used, the torque characteristics are as shown below.

It is assumed that the motor is used in combination with an inverter with the ND or HD rating. The overload capacity decreases when the LD or SLD rating is selected. Observe the specified range of the inverter.

• SF-V5RU1, 3, and 4

The maximum rotation speed of the SF-V5RU-55kW and SF-V5RU3-30kW is 2400 r/min.

The SF-V5RU-3.7kW or lower can be operated with the maximum rotation speed of 3600 r/min. For the use of those motors, please contact your sales representative.

- The maximum rotation speed of motors with a brake is 1800 r/min.
- The maximum short-time torque of the SF-V5RU[]K1, SF-V5RU[]K3, and SF-V5RU[]K4 is 120%.
- As the motor compatible with the maximum short-time torque of 150%, specify the SF-V5RU[[K1Y, SF-V5RU[]K3Y, or SF-V5RU[]K4Y.

Motor model

		SF-V	′5RU	F	H	5K	1		B T Y				_
Ormatical Othersteine	O	Otwart	O	0	O	0		0	- I Flaster we we the barrier	O	Dents offers dents	O	Demois athle is ad
Symbol Structure	Symbol	Structure	Symbol	Output (kW)	Symbol	Output (KW)		Symp	OI Electromagnetic brake	Symbol	Protective device	Symbol	Permissible load
None Horizontal type	None	200 V class	1K	1.5	18K	18.5		None	e Without	None	With thermal protector	None	120% 60 s
F Flange type	н	400 V class	2K	2.2	22K	22		В	With *1	Т	With thermistor *2	Y	150% 60 s
			3K	3.7	30K	30		<u> </u>					
			5K	5.5	37K	37	S	ymbol	Rated speed (r/min)	Maximu	m speed (r/min)		
			7K	7.5	45K	45		None	1500		3000		
			11K	11	55K	55		1	1000		2000		
			15K	15				3	1000		3000		
					1			4	500		2000		

*1 Since a brake power device is a stand-alone, install it inside the enclosure. (This device should be arranged at the customer side.)
 *2 To use the thermistor function of the thermistor-equipped motor SF-V5RU []]]]]] T, the plug-in option (FR-A8AZ) is required additionally.

Model lineup (•: Available model, -: Not available)

• Rated speed: 1500 r/min (4 poles)

Standard	Rated output (kW)	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
type	Frame number	90L	100L	112M	132S	132M	160M	160L	180M	180M	200L	200L	200L	225S
SF-V5RU(H	H)[]	•	•	•	•	•	•	٠	•	•	•	•	•	٠
SF-V5RUF	(H)[]	•	•	•	•	•	•	٠	•	•	•	•	•	-
SF-V5RU(H	H)[]B	•	•	•	•	•	•	٠	•	•	•	•	•	٠
SF-V5RUF	(H)[]B	٠	٠	•	٠	٠	•	٠	-	-	-	-	-	-
	type SF-V5RU(H SF-V5RUF SF-V5RU(H		type Frame number 90L SF-V5RU(H)[] • SF-V5RUF(H)[] • SF-V5RUF(H)[] •	type Frame number 90L 100L SF-V5RU(H)[] • • • SF-V5RUF(H)[] • • • SF-V5RUF(H)[] • • •	type Frame number 90L 100L 112M SF-V5RU(H)[] • • • • SF-V5RUF(H)[] • • • • SF-V5RUF(H)[] • • • • SF-V5RUF(H)[] • • • •	type Frame number 90L 100L 112M 132S SF-V5RU(H)[] • • • • • • SF-V5RUF(H)[] • • • • • • SF-V5RUF(H)[] • • • • • • SF-V5RU(H)[]B • • • • • •	type Frame number 90L 100L 112M 132S 132M SF-V5RU(H)[] • • • • • • • SF-V5RUF(H)[] • • • • • • • SF-V5RUF(H)[] • • • • • • • SF-V5RU(H)[]B • • • • • • •	type Frame number 90L 100L 112M 132S 132M 160M SF-V5RU(H)[] • <td>type Frame number 90L 100L 112M 132S 132M 160M 160L SF-V5RU(H)[] ●<</td> <td>type Frame number 90L 100L 112M 132S 132M 160M 160L 180M SF-V5RU(H)[] • <td< td=""><td>type Frame number 90L 100L 112M 132S 132M 160M 160L 180M SF-V5RU(H)[] • <td< td=""><td>type Frame number 90L 100L 112M 132S 132M 160M 160L 180M 200L SF-V5RU(H)[] •</td><td>type Frame number 90L 100L 112M 132S 132M 160M 160L 180M 200L 200L SF-V5RU(H)[] •</td><td>type Frame number 90L 100L 112M 132S 132M 160M 160L 180M 200L 200L</td></td<></td></td<></td>	type Frame number 90L 100L 112M 132S 132M 160M 160L SF-V5RU(H)[] ●<	type Frame number 90L 100L 112M 132S 132M 160M 160L 180M SF-V5RU(H)[] • <td< td=""><td>type Frame number 90L 100L 112M 132S 132M 160M 160L 180M SF-V5RU(H)[] • <td< td=""><td>type Frame number 90L 100L 112M 132S 132M 160M 160L 180M 200L SF-V5RU(H)[] •</td><td>type Frame number 90L 100L 112M 132S 132M 160M 160L 180M 200L 200L SF-V5RU(H)[] •</td><td>type Frame number 90L 100L 112M 132S 132M 160M 160L 180M 200L 200L</td></td<></td></td<>	type Frame number 90L 100L 112M 132S 132M 160M 160L 180M SF-V5RU(H)[] • <td< td=""><td>type Frame number 90L 100L 112M 132S 132M 160M 160L 180M 200L SF-V5RU(H)[] •</td><td>type Frame number 90L 100L 112M 132S 132M 160M 160L 180M 200L 200L SF-V5RU(H)[] •</td><td>type Frame number 90L 100L 112M 132S 132M 160M 160L 180M 200L 200L</td></td<>	type Frame number 90L 100L 112M 132S 132M 160M 160L 180M 200L SF-V5RU(H)[] •	type Frame number 90L 100L 112M 132S 132M 160M 160L 180M 200L 200L SF-V5RU(H)[] •	type Frame number 90L 100L 112M 132S 132M 160M 160L 180M 200L 200L

• Rated speed: 1000 r/min (4 poles), maximum speed: 2000 r/min, speed ratio 1:2

Model	Standard	Rated output (kW)	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37
Woder	type	Frame number	100L	112M	132S	132M	160M	160L	180M	180L	200L	200L	225S
Standard horizontal type	SF-V5RU(H	I)[]1(Y)	•	•	•	•	٠	٠	٠	٠	•	•	•
Flange type	SF-V5RUF((H)[]1(Y)	•	•	•	•	٠	٠	٠	•	٠	•	-
Standard horizontal type with brake	SF-V5RU(H	I)[]1B(Y)	•	•	•	•	٠	•	•	•	•	•	•
Flange type with brake	SF-V5RUF((H)[]1B(Y)	•	•	•	•	•	٠	-	-	-	-	-

• Rated speed: 1000 r/min (4 poles), maximum speed: 3000 r/min, speed ratio 1:3

Model	Standard	Rated output (kW)	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30
Woder	type	Frame number	112M	132S	132M	160M	160L	180M	180L	200L	200L	225S
Standard horizontal type	SF-V5RU(H	I)[]3(Y)	•	•	•	•	•	•	•	•	•	•
Flange type	SF-V5RUF(H)[]3(Y)	•	•	•	•	•	•	•	•	•	-
Standard horizontal type with brake	SF-V5RU(H	I)[]3B(Y)	•	•	•	•	•	•	•	•	•	•
Flange type with brake	SF-V5RUF(H)[]3B(Y)	•	•	•	•	•	-	-	-	-	-

• Rated speed: 500 r/min (4 poles), maximum speed: 2000 r/min, speed ratio 1:4

Model	Standard	Rated output (kW)	1.5	2.2	3.7	5.5	7.5	11	15
Woder	type	Frame number	132M	160M	160L	180L	200L	225S	225S
Standard horizontal type	SF-V5RU(H	l)[]4(Y)	٠	٠	٠	٠	٠	٠	•
Flange type	SF-V5RUF((H)[]4(Y)	٠	٠	٠	٠	٠	-	-
Standard horizontal type with brake	SF-V5RU(H	l)[]4B(Y)	٠	٠	٠	٠	٠	٠	•
Flange type with brake	SF-V5RUF((H)[]4B(Y)	٠	٠	٠	-	-	-	-

Since motors with frame No. 250 or higher, 400 V class, speed ratio 1:4 specifications are available as special products, please contact your sales representative.

Combination with the SF-V5RU1, 3, 4, SF-THY and inverter

When using the SF-V5RU1, 3, or 4(Y), always set Pr.83 Rated motor voltage and perform the offline auto tuning according to the Instruction Manual and additional materials, which are enclosed with the motor, and the Instruction Manual of the inverter.

		SF-V5RU[]1 (1	:2)		SF-V5RU[]3 (1	:3)		SF-V5RU[]4 (1	:4)
Voltage					200 V class				
Rated speed		1000 r/min			1000 r/min			500 r/min	
Base frequency		33.33 Hz			33.33 Hz			16.6 Hz	
Maximum speed		2000 r/min			3000 r/min			2000 r/min	
Motor capacity	Motor frame number	Motor model	Inverter model FR-A820-[] (ND rating)*4	Motor frame number	Motor model	Inverter model FR-A820-[] (ND rating)*4	Motor frame number	Motor model	Inverter mode FR-A820-[] (ND rating)*4
1.5 kW	100L	SF-V5RU1K1(Y)	00167(2.2K)	112M	SF-V5RU1K3(Y)	00167(2.2K)	132M	SF-V5RU1K4(Y)	00167(2.2K)
2.2 kW	112M	SF-V5RU2K1(Y)	00240(3.7K)	132S	SF-V5RU2K3(Y)	00240(3.7K)	160M	SF-V5RU2K4(Y)	00240(3.7K)
3.7 kW	132S	SF-V5RU3K1(Y)	00340(5.5K)	132M	SF-V5RU3K3(Y)	00340(5.5K)	160L	SF-V5RU3K4*3	00490(7.5K)
5.5 kW	132M	SF-V5RU5K1(Y)	00490(7.5K)	160M	SF-V5RU5K3(Y)	00490(7.5K)	180L	SF-V5RU5K4(Y)	00490(7.5K)
7.5 kW	160M	SF-V5RU7K1(Y)	00630(11K)	160L	SF-V5RU7K3(Y)	00630(11K)	200L	SF-V5RU7K4(Y)	00630(11K)
11 kW	160L	SF-V5RU11K1(Y)	00770(15K)	180M	SF-V5RU11K3(Y)	00770(15K)	225S	SF-V5RU11K4(Y)	00770(15K)
15 kW	180M	SF-V5RU15K1(Y)	00930(18.5K)	180L	SF-V5RU15K3(Y)	00930(18.5K)	225S	SF-V5RU15K4*3	01250(22K)
18.5 kW	180L	SF-V5RU18K1(Y)	01250(22K)	200L	SF-V5RU18K3(Y)	01250(22K)	250MD	SF-THY	01250(22K)
22 kW	200L	SF-V5RU22K1(Y)	01540(30K)	200L	SF-V5RU22K3(Y)	01540(30K)	280MD	SF-THY	01540(30K)
30 kW	200L*2	SF-V5RU30K1(Y)	01870(37K)	225S*1	SF-V5RU30K3(Y)	01870(37K)	280MD	SF-THY	01870(37K)
37 kW	225S	SF-V5RU37K1(Y)	02330(45K)	250MD*1	SF-THY	02330(45K)	280MD	SF-THY	02330(45K)
45 kW	250MD	SF-THY	03160(55K)	250MD*1	SF-THY	03160(55K)	280MD	SF-THY	03160(55K)
55 kW	250MD	SF-THY	03800(75K)	280MD*1	SF-THY	03800(75K)	280L	SF-THY	03800(75K)

Models surrounded by black borders and 400 V class are developed upon receipt of order. (For the SF-THY model, refer to page 237.)

*1 The maximum speed is 2400 r/min.

90% output in the high-speed range. (The output is reduced when the speed is 1000 r/min or faster. For details, please contact your sales representative.) For motors with overload capacity 150% 60 s ("Y" at the end of their model names), contact your sales representative. A typical example is shown. To determine the combination of the FR-A800 inverter and the SF-THY motor, please contact your sales representative. *2

*3

*4

Motor specifications

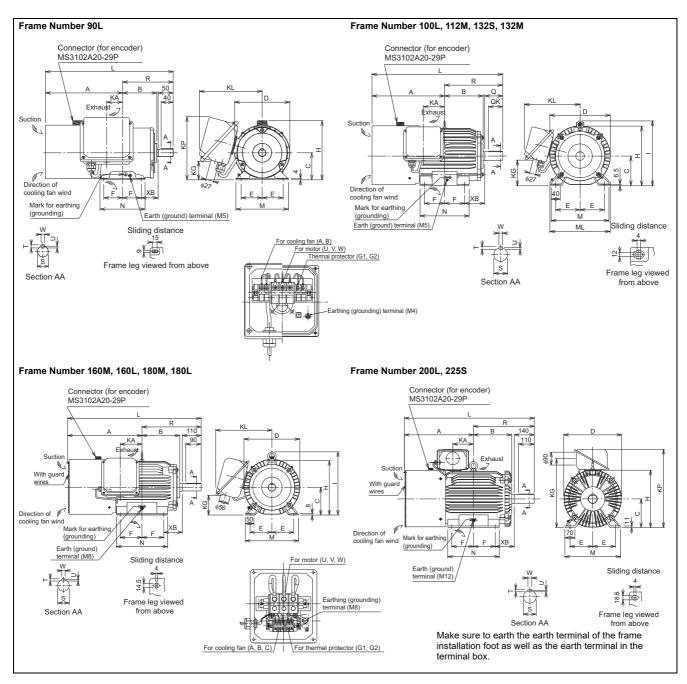
•200 V class (Mitsubishi Electric dedicated motor [SF-V5RU (1500 r/min series)])

	1833 (1911545)										-	/1	/	
Motor type SF-V5RU[]K		1	2	3	5	7	11	15	18	22	30	37	45	55
Applicable inv FR-A820-[]K		2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75
Rated output	(kW)	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30 *1	37 *1	45 *1	55
Rated current	(A)	8.5	11.5	17.6	28.5	37.5	54	72.8	88	102	126	168	198	264
Rated torque	(N⁼m)	9.55	14.1	23.6	35.0	47.7	70.0	95.5	118	140	191	235	286	350
Maximum toro (N*m)	que 150% 60 s	14.3	21.1	35.4	52.4	71.6	105	143	176	211	287	353	429	525
Rated speed (r/min)								1500					•
Maximum spe	ed (r/min)							3000 *2						2400
Frame No.		90L	100L	112M	132S	132M	160M	160L	180M	180M	200L	200L	200L	225S
Inertia momer	nt J (×10 ⁻⁴ kg∎m²)	67.5	105	175	275	400	750	875	1725	1875	3250	3625	3625	6850
Noise *5					7	5 dB or	less				8	0 dB or les	s	85 dB or less
Cooling fan	Voltage) V/50 Hz 230 V/6				TI		nase 200 \ e 200 to 2	V/50 Hz 30 V/60 H:	z	
(with thermal protector)	Input *3		36/55 W .26/0.32		22/2 (0.11/0	8 W).13 A)			71 W /0.39 A)			100/156 W).47/0.53 A		85/130 W (0.46/0.52 A)
*7*8	Recommended thermal setting		0.36 A		0.1	8 A		0.	51 A			0.69 A		0.68 A
Surrounding a humidity	air temperature,				-10	to +40°	C (non-l	freezing),	90%RH	or less (no	on-conden	sing)		
Structure (Pro	tective structure)				Totally e	enclosed	forced	draft syst	em (Moto	r: IP44, co	oling fan:	IP23S) *4		
Detector				Er	ncoder 20	048P/R,	A phase	, B phase	e, Z phas	e +12 V/2	4 VDC pov	wer supply	*6	
Equipment							Enc	oder, the	rmal prot	ector, fan				
Heat resistand	ce class							_	F					
Vibration rank									V10					
Approx. mass	(kg)	24	33	41	52	62	99	113	138	160	238	255	255	320

●400 V class (Mitsubishi Electric dedicated motor [SF-V5RUH (1500 r/min series)])

							-			•				
Motor type SF-V5RUH[]K		1	2	3	5	7	11	15	18	22	30	37	45	55
Applicable inve FR-A840-[]K (N		2.2	2.2	3.7	7.5	11	15	18.5	22	30	37	45	55	75
Rated output (I	kW)	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30 *1	37 *1	45 *1	55
Rated current ((A)	4.2	5.8	8.8	14.5	18.5	27.5	35.5	44	51	67	84	99	132
Rated torque (I	N⁼m)	9.55	14.1	23.6	35.0	47.7	70.0	95.5	118	140	191	235	286	350
Maximum torqu	ue 150% 60 s (N*m)	14.3	21.1	35.4	52.4	71.6	105	143	176	211	287	353	429	525
Rated speed (r	/min)								1500					
Maximum spee	ed (r/min)							3000 *2						2400
Frame No.		90L	100L	112M	132S	132M	160M	160L	180M	180M	200L	200L	200L	225S
Inertia moment	t J (×10 ⁻⁴ kg⁼m²)	67.5	105	175	275	400	750	875	1725	1875	3250	3625	3625	6850
Noise *5					7	5 dB or I	ess				8	0 dB or les	S	85 dB or less
	Voltage	s Single	Single-ph e-phase	ase 200 200 V to	V/50 Hz 230 V/6	0 Hz						00 V/50 Hi 60 V/60 Hi		
Cooling fan (with thermal	Input *3		36/55 W .26/0.32			8 W).13 A)			'71 W /0.19 A)			100/156 W).27/0.30 A		85/130 W (0.23/0.26 A)
protector) *7*8	Recommended thermal setting		0.36 A		0.1	8 A		0.	25 A			0.39 A		0.34 A
Surrounding ai humidity	ir temperature,				-10	to +40°	C (non-f	reezing),	90%RH	or less (no	on-conden	sing)		
Structure (Prot	ective structure)				Totally e	nclosed	forced of	lraft syst	em (Moto	r: IP44, co	oling fan:	IP23S) *4		
Detector				En	coder 20	48P/R, /	A phase	, B phase	e, Z phase	e +12 V/24	4 VDC pov	wer supply	*6	
Equipment							Enc	oder, the	rmal prote	ector, fan				
Heat resistance	e class								F					
Vibration rank									V10					
Approx. mass	(kg)	24	33	41	52	62	99	113	138	160	238	255	255	320

80% output in the high-speed range. (The output is reduced when the speed is 2400 r/min or more. Contact us separately for details.) A dedicated motor of 3.7 kW or less can be run at the maximum speed of 3600 r/min. Consult our sales office when using the motor at the maximum speed. *1 *2 *3 *4 Power (current) at 50 Hz/60 Hz.

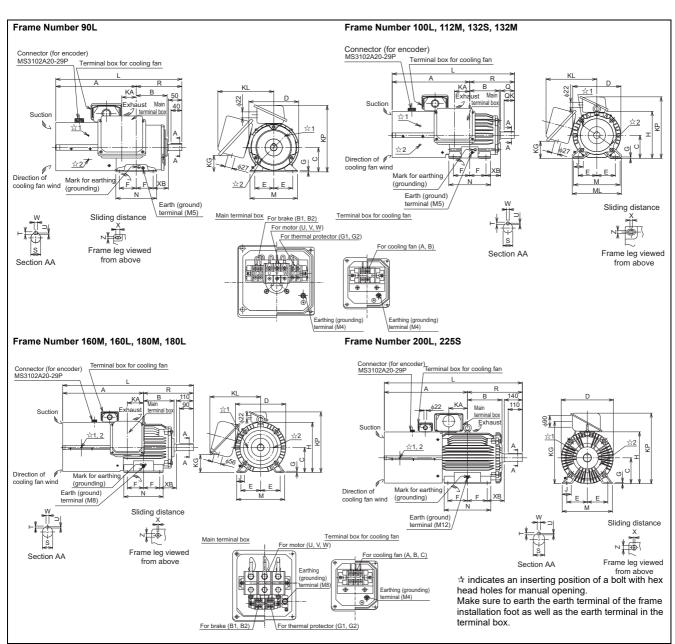

Since a motor with brake has a window for gap check, the protective structure of both the cooling fan section and brake section is IP20. S of IP23S is an additional code indicating the condition that protection from water intrusion is established only when a cooling fan is not operating.

The value when high carrier frequency is set (Pr.72 = 6, Pr.240 = 0). The 12 V/24 V power supply is required as the power supply for the encoder. (When the FR-A8TP is used, the 24 V power supply of the FR-A8TP can be used for the encoder of the SF-V5RU.) *5 *6

The cooling fan is equipped with a thermal protector. The cooling fan stops when the coil temperature exceeds the specified value in order to protect the fan motor. A restrained cooling fan or degraded fan motor insulation could be causes for the rise in coil temperature. The cooling fan re-starts when the coil *7 temperature drops to normal.

The cooling fan voltage and input values are the basic specifications of the cooling fan alone and free air values. The input value becomes slightly larger when it is rotated by this motor due to an increased workload, but the cooling fan can be used as it is. When preparing a thermal relay at the user side, use *8 the recommended thermal setting.

• Dedicated motor outline dimension drawings (standard horizontal type)


Dimensions table

imen	isions	table																												(Unit	: mm
	SF-V5RU		SF-V5RU													N	lotor												Term	ninal s size	crew
[]K	[]K1	[]K3	[]K4	No.	(kg)	Α	В	С	D	Е	F	н	-	KA	KG	KL(KP)	L	М	ML	Ν	ХВ	Q	QK	R	S	Т	U	w	U,V,W	A,B,(C)	G1,G2
1	-	—	—	90L	24	256.5	114	90	183.6	70	62.5	198	—	53	65	220(210)	425	175	—	150	56	Π	—	168.5	24j6	7	4	8	M6	M4	M4
2	1		-	100L	33	284	128	100	207	80	70	203.5	230	65	78	231	477	200	212	180	63	60	45	193	28j6	7	4	8	M6	M4	M4
3	2	1	-	112M	41	278	135	112	228	95	70	226	253	69	93	242	478	230	242	180	70	60	45	200	28j6	7	4	8	M6	M4	M4
5	3	2	-	132S	52	303	152	132	266	108	70	265	288	75	117	256	542	256	268	180	89	80	63	239	38k6	8	5	10	M6	M4	M4
7	5	3	1	132M	62	322	171	132	266	108	89	265	288	94	117	256	580	256	268	218	89	80	63	258	38k6	8	5	10	M6	M4	M4
11	7	5	2	160M	99	412	198	160	318	127	105	316	367	105	115	330	735	310	I	254	108	I	-	323	42k6	8	5	12	M8	M4	M4
15	11	7	3	160L	113	434	220	160	318	127	127	316	367	127	115	330	779	310	—	298	108	Π	—	345	42k6	8	5	12	M8	M4	M4
18	-		-	180M	138 160	420 E	22E E	190	262	120 5	120 5	250	410	127	120	352	700	335	I	285	121		-	351.5	1010	9	5.5	14	M8	M4	M4
22	15	11	—	100101	160	430.5	220.0	100	303	139.5	120.0	309	410	127	139	352	790	335	_	200	121	_	_	301.0	4010	9	5.5	14	IVIO	1114	1014
—	18	15	5	180L		457.5	242.5	180	363	139.5	139.5	359	410	146	139	352	828	335	—	323	121	Π	—	370.5	55m6	10	6	16	M8	M4	M4
30	-	_	7	200L	238 255	102 5	267 E	200	406	150	152.5	401		145	407	(546)	000	200	I	361	133		_	425.5	60m6	11	7	18	M10	M4	M4
37, 45	22, 30	18, 22	—	200L	255	403.5	207.5	200	400	109	152.5	401	_	140	407	(040)	909	390	_	301	133	_	_	420.0	001110			10	IVI IU	11/14	1/14
55	37	30	11, 15	225S	320	500	277	225	446	178	143	446	-	145	533	(592)	932	428		342	149	I	-	432	65m6	11	7	18	M10	M4	M4

lote) Leave an enough clearance between the fan suction port and wall to ensure adequate

cooling. Also, check that the ventilation direction of a fan is from the opposite load side to the load side

14

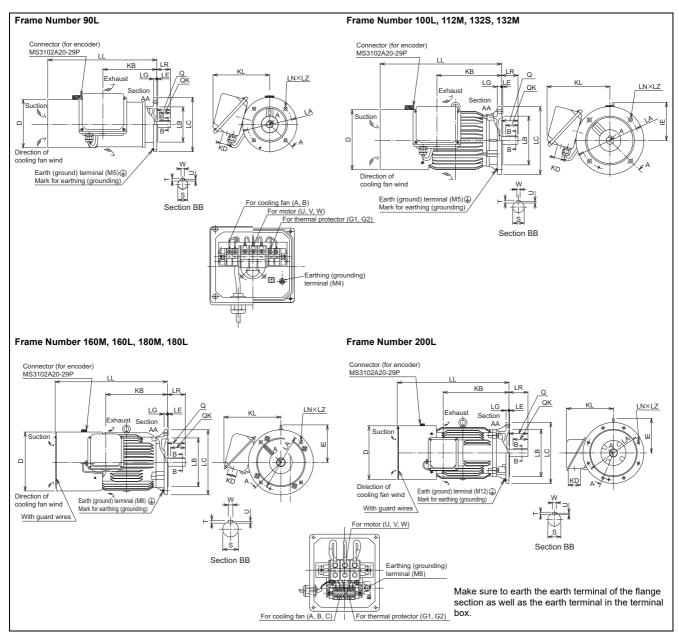
Dedicated motor outline dimension drawings (1500r/min series) (standard horizontal type with brake) ٠

14 **Dimensions** table

Dime	nsion	s table	Ð																																	(Ur	nit: n	nm)
SF-V5RU	SF-V5RU	SF-V5RU	SF-V5RU	Frame	Mass											M	otor													Sha	aft en	d				rmina si:	ze	
[]КВ	[]K1B	[]K3B	[]K4B	No.	(kg)	Α	в	с	D	ш	F	G	н	Т	J	KA	KD	KG	KL	КР	L	М	ML	N	x	ΧВ	z	Q	QK	R	S	т	U	×		A,B ,(C)		
1	—	I	I	90L	29	296.5	114	90	183.6	70	62.5	4	I	I	-	53	27					175		150	15	56	9	50	40	168.5	24j6	7	4	8	M6	M4	M4	M4
2	1	-		100L	46	333.5	128	100	207	80		6.5	l	1	40	65	27	78	231	265	526.5	200	212	180	4	63	12	60	45	193	28j6	7	4	8	M6	M4	M4	M4
3	2	1		112M	53	355	135	112	228	95	70	6.5	I	I	40	69	27	93	242	290	555	230	242	180	4	70	12	60	45	200	28j6	7	4	8	M6	M4	M4	M4
5	3	2		132S	70	416	152	132	266	108	70	6.5		Ι	40	75	27	117	256	329	655	256	268	180	4	89	12	80	63	239	38k6	8	5	10	M6	M4	M4	M4
7	5	3	1	132M	80	435	171	132	266	108	89	6.5	l	1	40	94	27	117	256	329	693	256	268	218	4	89	12	80	63	258	38k6	8	5	10	M6	M4	M4	M4
11	7	5	2	160M	140	522.5	198	160	318	127	105	8	I	I	50	105	56	115	330	391	845.5	310	I	254	4	108	14.5	110	90	323	42k6	8	5	12	M8	M4	M4	M4
15	11	7	3	160L	155	544.5	220	160	318	127	127	8		Ι	50	127	56	115	330	391	889.5	310	-	298	4	108	14.5	110	90	345	42k6	8	5	12	M8	M4	M4	M4
18	—	-		180M	185	569 5	225.5	180	363	130.5	120.5	8			50	127	56	130	352	128	020	335		285	4	121	14.5	110	00	351.5	1846	0	55	14	M8	M4	MA	MA
22	15	11		100101	215	300.3	220.0	100	303	133.3	120.5	0		-	50	127	50	133	332	420	320	333		205	4	121	14.5	110	30	301.3	4010	3	5.5	14	IVIO	1014	1014	101-4
—	18	15	5	180L	255	587.5	242.5	180	363	139.5	139.5	8	I	l	50	146	56	139	352	428	958	335	I	323	4	121	14.5	110	90	370.5	55m6	10	6	16	M8	M4	M4	M4
30	_	-	7	200L	305	644.5	267.5	200	406	150	1525	11			70	145	90	497	-	546	1070	390		361	4	133	18.5	140	110	425.5	60m6	11	7	18	M10	M4	MA	MA
37, 45	22, 30	18, 22		2001	330	044.0	201.3	200	400	133	102.0			-	10	143	30	407						301	4	133	10.5	140	110	42.3.3	ouno		'	10	WITO	1014	1014	101-4
55	37	30	11, 15	225S	395	659	277	225	446	178	143	11	l	Ì	70	145	90	533	I	592	1091	428	I	342	4	149	18.5	140	110	432	65m6	11	7	18	M10	M4	M4	M4

Note) 1. Install the motor on the floor and use it with the shaft horizontal

2. Leave an enough clearance between the fan suction port and wall to ensure adequate cooling.


Also, check that the ventilation direction of a fan is from the opposite load side to the load side.

The size difference of top and bottom of the shaft center height is ${}^{\scriptscriptstyle 0}_{\scriptscriptstyle 0.5}$ 3

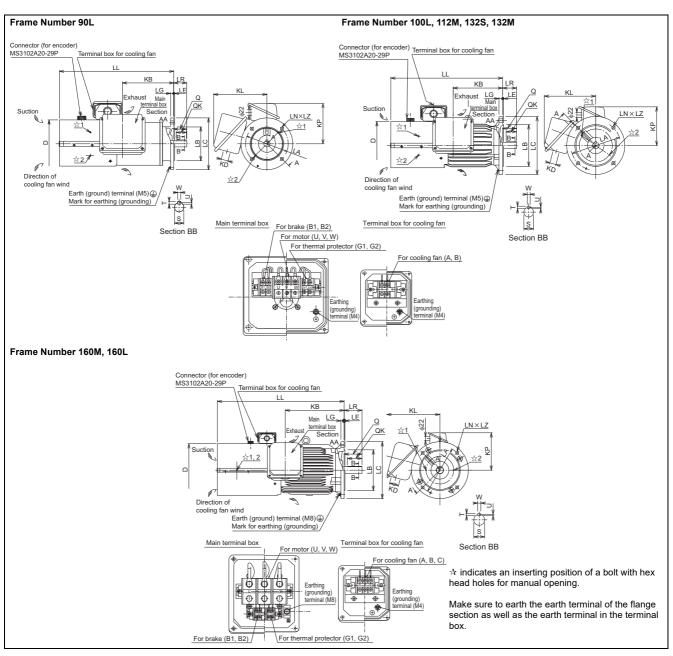
4

The 400 V class motor has "-H" at the end of its type name. Since a brake power device is a stand-alone, install it inside the enclosure. 5 (This device should be arranged at the customer side.)

Compatible Motors

• Dedicated motor outline dimension drawings (1500r/min series) (flange type)

Dimensions table


Dimer	nsions	s table	•																									(Unit	: mm)
SF-V5RU		SF-V5RU	SF-V5RU										Motor									s	ihaft en	d			Tern	ninal so size	crew
F[]K	F[]K1	F[]K3	F[]K4	Number	No.	(kg)	D	IE	KB	KD	KL	LA	LB	LC	LE	LG	LL	LN	LZ	LR	Q	QK	S	Т	U	W	U,V,W	A,B,(C)	G1,G2
1	-	1	1	FF165	90L	26.5	183.6	-	198.5	27	220	165	130j6	200	3.5	12	402	4	12	50	50	40	24j6	7	4	8	M6	M4	M4
2	1	1	1	FF215	100L	37	207	130	213	27	231	215	180j6	250	4	16	432	4	14.5	60	60	45	28j6	7	4	8	M6	M4	M4
3	2	1		FF215	112M	46	228	141	239	27	242	215	180j6	250	4	16	448	4	14.5	60	60	45	28j6	7	4	8	M6	M4	M4
5	3	2	-	FF265	132S	65	266	156	256	27	256	265	230j6	300	4	20	484	4	14.5	80	80	63	38k6	8	5	10	M6	M4	M4
7	5	3	1	FF265	132M	70	266	156	294	27	256	265	230j6	300	4	20	522	4	14.5	80	80	63	38k6	8	5	10	M6	M4	M4
11	7	5	2	FF300	160M	110	318	207	318	56	330	300	250j6	350	5	20	625	4	18.5	110	110	90	42k6	8	5	12	M8	M4	M4
15	11	7	3	FF300	160L	125	318	207	362	56	330	300	250j6	350	5	20	669	4	18.5	110	110	90	42k6	8	5	12	M8	M4	M4
18	_	-	-	FF350	180M	160	363	230	378.5	56	352	350	300j6	400	-	20	690	4	18.5	110	110	90	48k6	9	5.5	14	M8	M4	M4
22	15	11	-	FF350	100101	185	303	230	3/0.5	90	352	350	300j6	400	э	20	690	4	16.5	110	110	90	4060	9	5.5	14	IVIO	1014	11/14
—	18	15	5	FF350	180L	225	363	230	416.5	56	352	350	300j6	400	5	20	728	4	18.5	110	110	90	55m6	10	6	16	M8	M4	M4
30	-	1	7	FF400	200L	270	406	255	485	90	346	400	350j6	450	5	22	823.5	0	18.5	140	140	110	60m6	11	7	18	M10	M4	M4
37, 45	22, 30	18, 22	1	FF400	200L	290	400	200	400	90	340	400	330j0	450	5	22	023.5	0	10.5	140	140	110	00110		'	10	WITU	1114	1114

Note) 1. Install the motor on the floor and use it with the shaft horizontal.

For use under the shaft, the protection structure of the cooling fan is IP20. 2. Leave an enough clearance between the fan suction port and wall to ensure adequate

cooling. Also, check that the ventilation direction of a fan is from the opposite load side to the load side

3. The 400 V class motor has "-H" at the end of its type name.

• Dedicated motor outline dimension drawings (1500r/min series) (flange type with brake)

Dimensions table

S

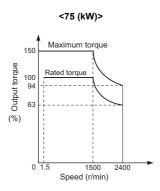
Dimer	nsions	s table	1																										(Unit:	: mm)
SF-V5RU	SF-V5RU	SF-V5RU	SF-V5RU	Flange	Frame	Mass							Motor									Sha	aft end				Ter	minal s	screw s	size
F[]KB	F[]K1B	F[]K3B	F[]K4B	Number	No.	(kg)	D	KB	KD	KL	KP	LA	LB	LC	LE	LG	LL	LN	LZ	LR	Q	QK	S	Т	U	W	U,V,W	A,B,(C)	B1,B2	G1,G2
1	I	-	-	FF165	90L	31.5	183.6	198.5	27	220	155	165	130j6	200	3.5	12	442	4	12	50	50	40	24j6	7	4	8	M6	M4	M4	M4
2	1	-	-	FF215	100L	50	207	213	27	231	165	215	180j6	250	4	16	481.5	4	14.5	60	60	45	28j6	7	4	8	M6	M4	M4	M4
3	2	1	_	FF215	112M	58	228	239	27	242	178	215	180j6	250	4	16	525	4	14.5	60	60	45	28j6	7	4	8	M6	M4	M4	M4
5	3	2	-	FF265	132S	83	266	256	27	256	197	265	230j6	300	4	20	597	4	14.5	80	80	63	38k6	8	5	10	M6	M4	M4	M4
7	5	3	1	FF265	132M	88	266	294	27	256	197	265	230j6	300	4	20	635	4	14.5	80	80	63	38k6	8	5	10	M6	M4	M4	M4
11	7	5	2	FF300	160M	151	318	318	56	330	231	300	250j6	350	5	20	735.5	4	18.5	110	110	90	42k6	8	5	12	M8	M4	M4	M4
15	11	7	3	FF300	160L	167	318	362	56	330	231	300	250j6	350	5	20	779.5	4	18.5	110	110	90	42k6	8	5	12	M8	M4	M4	M4

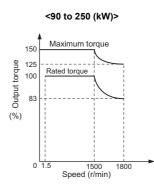
Note) 1. Install the motor on the floor and use it with the shaft horizontal Leave an enough clearance between the fan suction port and wall to ensure adequate cooling. Also, check that the ventilation direction of a fan is from the opposite load side to the

load side

The 400 V class motor has "-H" at the end of its type name. 3. 4.

Since a brake power device is a stand-alone, install it inside the enclosure. (This device should be arranged at the customer side.)


14


• Application to vector control dedicated motors (SF-THY) (75 kW or higher)

For performing vector control, the FR-A8AP/FR-A8TP (vector control compatible option) is required. When the FR-A8TP is not used, a 12 V or 24 V power supply is required as the power supply for the encoder of the SF-THY. (When the FR-A8TP is used, the 24 V power supply of the FR-A8TP can be used for the encoder of the SF-THY.)

Motor torque

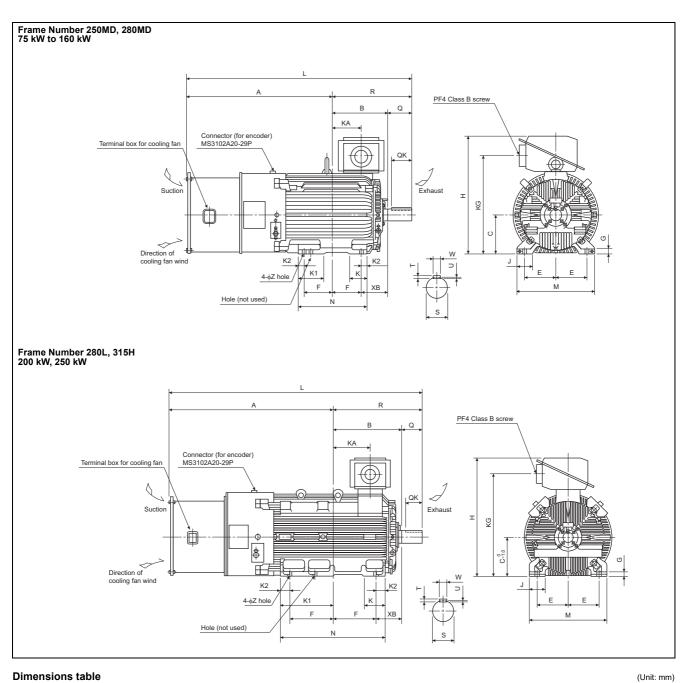
When the vector control dedicated motor (SF-THY) and inverter of the same capacity are used and rated voltage is input, the torque characteristics are as shown below.

Model lineup

• Rated speed: 1500 r/min (4 poles)

Model	Standard type			Ra	ated output (k)	N)		
Woder	Standard type	75	90	110	132	160	200	250
Standard horizontal type	SF-THY[]	75	90	110	132	160	200	250

• Both 200 V and 400 V classes have the same model name. Since motors speed ratio, 1:2, 1:3, or 1:4 specifications are available as special products, contact your sales representative.


Motor specifications

		N	lotor type					SF-TH	1			
		Appli	cable inverter		FR-A820-[]K				FR-A840-[]K			
			ND rating)		90	90	110	132	160	185	220	280
Rat	ed ou	utput (k	<w)< td=""><td></td><td>75</td><td>75</td><td>90</td><td>110</td><td>132</td><td>160</td><td>200</td><td>250</td></w)<>		75	75	90	110	132	160	200	250
Rat	ed to	rque (l	N'm)		477	477	572	700	840	1018	1273	1591
Max	kimun	n torqı	ue 150%60 s (I	N'm)	715	715	858	1050	1260	1527	1909	2386
Rat	ed sp	beed (r	/min)		1500				1500			
Max	kimun	n spee	ed (r/min)		2400	2400			18	00		
Fra	me N	lo.			250MD	250MD	250MD	280MD	280MD	280MD	280L	315H
Iner	tia m	oment	t J (kgʻm²)		1.1	1.1	1.7	2.3	2.3	4.0	3.8	5.0
Noi	se				90 dB		90 dB			95	dB	
			Voltage		Three-phase	e, 200 V/50 Hz	, 200 V/60 Hz,	220 V/60 Hz	(400 V class c	ooling fan is a	vailable upon	order)
Coc	oling f	fan	Input (W)	50 Hz	750	400	400	400	400	400	750	750
				60 Hz	750	750	750	750	750	750	1500	1500
Арр		mass (610	610	660	870	890	920	1170	1630
		roundi peratu	ing air ıre, humidity			-10 to	+40°C (non-fr	eezing), 90%F	H or less (nor	-condensing)		
	Stru	ucture					Totally	enclosed force	d draft system	1		
su	Equ	uipmer	nt				Encod	ler, thermal pr	otector*2, fan			
atic	Insu	ulation						Class F				
Common specifications	Vibr	ration	rank					V10				
spe	Ъ		olution					2048 pulse				
nor	encoder		er supply volta					12 V/24 VDC±	:10% *1			
hma	enc	Curr	ent consumptio	on				90 mA				
ö	Dedicated		out signal form				A, B phases (9		, , , ,			
	dica	Outp	out circuit				nentary (consta	0		,	w)	
	De	Outp	out voltage				evel: Power si level: Power s					

*1 The 12 V/24 V power supply is required as the power supply for the encoder.

*2 A motor with a thermal protector is also available. Contact your sales representative.

• Dedicated motor outline dimension drawings (1500 r/min series)

Output Frame

140

		(~	1	•	5			,		,		141	144	-	E				ļ		2	y	ģ	•			•
75	250MD	610	988.5	340.5	250	557	203	174.5	30	775	100	130	168	50	1471	486	449	482.5	24	168	157.5	635	140	110	φ75m6	20	12	7.5
90	250MD	660	988.5	340.5	250	557	203	174.5	30	775	100	130	168	50	1471	486	449	482.5	24	168	157.5	635	140	110	φ75m6	20	12	7.5
110	280MD	870	1049.5	397.5	280	607	228.5	209.5	30	845	110	130	181	40	1619	560	449	569.5	24	190	210.5	705	170	140	φ85m6	22	14	9
132	280MD		1049.5				228.5	209.5	30	845	110	130	181	40	1619	560	449	569.5	24	190	210.5	705	170	140	φ85m6	22	14	9
160	280MD	920	1049.5	397.5	280	607	228.5	209.5	30	845	110	130	181	40	1619	560	499	569.5	24	190	210.5	705	170	140	φ85m6	22	14	9
200	280L	1170	1210.5	416.5	280	652	228.5	228.5	30	885	110	160	160	75	1799	560	607	588.5	24	190	214.5	745	170	140	φ85m6	22	14	9
250	315H	1630	1343	565	315	717	254	355	35	965	130	175	428	80	2084	636	870	741	28	216	306	825	170	140	φ95m6	25	14	9

Note) The tolerance of the top and bottom of the center shaft height *C is $\frac{1}{25}$ for the 250 frame and $\frac{1}{20}$ for the 280 frame or more.

• Application to IPM motors (MM-CF series)

Motor model

20 2.0 kW Rated speed Motor model (The rated output is indicated in square brackets.) Motor kW 1.0 kW 1.5 kW 2.0 kW 3.5 kW 5.0 kW 7.0 kW Remarks 2000 r/min MM-CF[]2 • <th></th> <th>И -</th> <th>С</th> <th>F</th> <th>52</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		И -	С	F	52											
10 1.0 kW 50 5.0 kW B Yes None (standard part) None (straight axis) 15 1.5 kW 70 7.0 kW 0 7.0 kW 0	Symbol	Output	Symbol	Output	Symbol R	ated spee	ed Syr	nbol Electron	nagnetic ke ⁻¹	Symbol		Symbol	Axis form			
10 1.0 kW 50 5.0 kW 15 1.5 kW 70 7.0 kW 20 2.0 kW Motor model Motor capacity K With key groove Rated speed Motor model 0.5 kW 1.0 kW 1.5 kW 2.0 kW 3.5 kW 5.0 kW 7.0 kW 2000 r/min MM-CF[]2 Image: Comparison of the square brackets.) Image: Comparison of the square brackets.) Image: Comparison of the square brackets.) MM-CF[]2 Image: Comparison of the square brackets.) Image: Comparison of the	5	0.5 kW	35	3.5 kW	2	2000 r/min	. No	one N/	4	None	rminal box lea	d None	Standard			
20 2.0 kW Rated speed Motor model (The rated output is indicated in square brackets.) Motor SkW 1.0 kW 1.5 kW 2.0 kW 3.5 kW 5.0 kW 7.0 kW Remarks 2000 r/min MM-CF[]2B • </td <td>10</td> <td>1.0 kW</td> <td>50</td> <td>5.0 kW</td> <td></td> <td></td> <td></td> <td>3 Ye</td> <td>s</td> <td>None (</td> <td>standard part)</td> <td>None</td> <td>(straight axis)</td>	10	1.0 kW	50	5.0 kW				3 Ye	s	None (standard part)	None	(straight axis)			
Motor model Motor model Motor model Motor capacity Remarks Rated speed The rated output is indicated in square brackets.) 0.5 kW 1.0 kW 1.5 kW 2.0 kW 3.5 kW 5.0 kW 7.0 kW MM-CF[]2 • • • • • • • • • Standard MM-CF[]2B • • • • • • • • Made on order MM-CF[]2C • • • • • • • Made on order	15	1.5 kW	70	7.0 kW						C Ca	innon connect	or K	With key groove			
Made on order MM-CF[]2C 0.5 kW 1.0 kW 1.5 kW 2.0 kW 3.5 kW 5.0 kW 7.0 kW MM-CF[]2B • • • • • • • • • • • MM-CF[]2C • • • • • • • • • • • MM-CF[]2C • • • • • • • • •	20	2.0 kW														
MM-CF[]2 •<	Datad	Rated speed Motor model Motor capacity Remark														
2000 r/min MM-CF[]2B • • • • - - MM-CF[]2C • • • • • • • Made on order	Rated	speea	(The rated ou	utput is indicated	in square brackets.)	0.5 kW	1.0 kW	1.5 kW	2.0 kW	3.5 kV	/ 5.0 kW	7.0 kW	Remarks			
2000 r/min MM-CF[]2C • • • • • Made on order				MM-CF[]2	•	•	•	•	•	•	•	Standard			
MM-CF[]2C • • • • • • Made on order	0000		ſ	MM-CF[]	2B	•	٠	•	•	•	-	-				
	2000 r	/[[]]]	1	MM-CF[]	2C	•	٠	•	•	•	•	•	Made on order			
			1	MM-CF[]	2K	•	٠	•	•	•	•	•]			

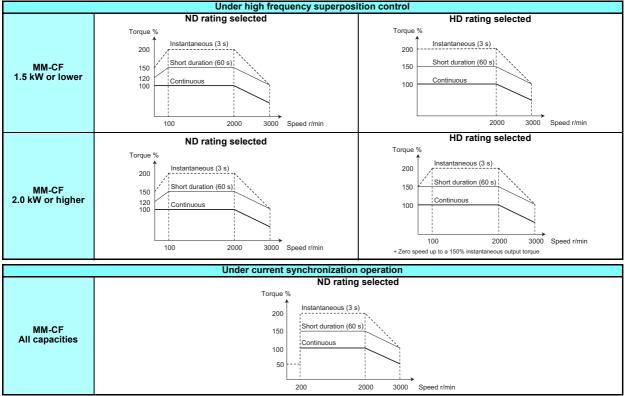
• : Released model - : Not available

Motor specifications

+ IPM motor MM-CF (2000 r/min series)

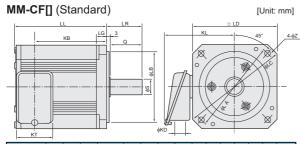
Motor	type: MM-CF[]		52(C)(B)	102(C)(B)	152(C)(B)	202(C)(B)	352(C)(B)	502(C)	702(C)
		SLD	0.4K	0.4K	0.75K	1.5K	2.2K	3.7K	5.5K
Applicable inverter	FR-A820-[]	LD	0.4K	0.4K	0.75K	1.5K	2.2K	3.7K	5.5K
Applicable inverter	FR-A020-[]	ND	0.4K	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K
		HD	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K	11K
Continuous	Rated output (kW)	0.5	1.0	1.5	2.0	3.5	5.0	7.0
characteristics*1	Rated torque (N·m	I)	2.39	4.78	7.16	9.55	16.70	23.86	33.41
Rated	speed∗ı (r/min)		2000						
Max.	speed (r/min)		3000						
Instantaneous p	ermissible speed (r/min)		3450 *6						-
Maximu	ım torque (N⋅m)		4.78	9.56	14.32	19.09	33.41	47.73	66.82
Inertia mom	ent J∗₅ (×10 ⁻⁴ kg·m²)		6.6 (7.0)	13.7 (14.9)	20.0 (21.2)	45.5 (48.9)	85.6 (89.0)	120.0	160.0
	f load inertia moment to ertia moment*2	motor	100 times ma	ax.		50 times max	ζ.		
Rate	d current (A)		1.81	3.70	5.22	7.70	12.5	20.5	27.0
Insu	ulation rank		Class F						
5	Structure		Totally-enclos	sed, self-coolin	g (protective s	ystem: IP44 *3	, IP65 *3*4)		
Surrounding air	r temperature, humidity		-10°C to +40	°C (non-freezir	ng), 90%RH or	less (non-cond	densing)		
Storage temp	erature and humidity		-20°C to +70	°C (non-freezir	ng), 90%RH or	less (non-cond	densing)		
4	mbience		Indoors (no d	lirect sunlight),	free from corre	osive gas, flam	mable gas, oil	mist, dust and	l dirt
	Altitude		Maximum 10	00 m					
١	/ibration		X: 9.8 m/s ² ,	Y: 24.5 m/s ²					
М	ass (kg)∗₅		5.1 (7.8)	7.2 (11)	9.3 (13)	13 (20)	19 (28)	27	36

*1

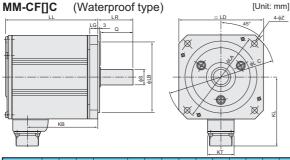

When the power supply voltage drops, we cannot guarantee the above output and rated speed. When the load torque is 20% of the motor rating. The permissible load inertia moment ratio is smaller when the load torque is larger. *2

Consult us if the load inertia moment ratio excesseds the above value.

*3 *4


This does not apply to the shaft through portion. Value for the MM-CF[]2C. The value for the MM-CF[]2B is indicated in parentheses. Set 3150 r/min (210 Hz) or less in **Pr.374 Overspeed detection level**. The inverter may be damaged by the motor induction voltage if the motor speed exceeds 3150 r/min (210 Hz). *5 *6

Motor torque characteristic



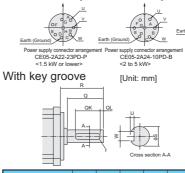
4-¢Z

Motor outline dimension ٠

Model	Output (kW)	LL	φLA	φLB	φLC	□LD	LG	кв	φKD	KL	кт	φZ	LR	Q	φS
MM-CF52	0.5	97						62							
MM-CF102	1.0	122	145	110h7	165	130	12	87	22	110	56	9	55	50	24h6
MM-CF152	1.5	147]					112							
MM-CF202	2.0	128						81.5							
MM-CF352	3.5	170	1	114.3 .0 025	000	176	18	123.5					-		
MM-CF502	5.0	224	200	114.3 .0.025	230	1/6	18	172.5	27	141	93	13.5	79	75	35+0.010
MM-CF702	7.0	299	1					247.5							
The outline d contact your					d. Whe	en pre	cise o	utline	dime	ensio	ns ar	e req	uirec	l,	

Model	Output (kW)	LL	φLA	φLB	φLC	□LD	LG	КВ	KL	кт	φZ	LR	Q	φS
MM-CF52C	0.5	97						57.5						
MM-CF102C	1.0	122	145	110h7	165	130	12	82.5	111	41	9	55	50	24h6
MM-CF152C	1.5	147						107.5						
MM-CF202C	2.0	128						83.3						
MM-CF352C	3.5	170	200		230	176	18	125.3	141	46	10.5	79	75	35 ^{+0.010}
MM-CF502C	5.0	224	200	114.3 .0.025	230	176	18	179.3			13.5	/9	75	35 8
MM-CF702C	7.0	299						249.3	150	58				

The outline dimensions may be changed. When precise outline dimensions are required, contact your sales representative


MM-CF[]B (With an electromagnetic brake) [Unit: mm]

45° 4-¢Z Ø ø \$¢ 6

Model	Output (kW)	LL	φLA	φLB	φLC	□LD	LG	кв	φKD	KL	кт	φZ	LR	Q	φS
MM-CF52B	0.5	159						58							
MM-CF102B	1.0	184	145	110h7	165	130	12	83	22	108	80	9	55	50	24h6
MM-CF152B	1.5	209						108							
MM-CF202B	2.0	231						97.5					-		
MM-CF352B	3.5	279	200	114.3.0.025	230	176	18	139.5	27	141	93	13.5	79	/5	35+8.010
	MM-CF352B 3.5 279 200 114-3 and 210 110 1139.5 21 141 30 153 75 75 155 and 210 110 1139.5 21 141 30 153 75 75 155 and 210 110 110 110 110 110 110 110 110 110														

сырру connector arrange CE05-2A32-17SD-D (7 kW)

contact your sales representative

flange

Motor	φS	R	Q	w	QK	QL	U	r
MM-CF52 to 152	24h6	55	50	8.0.036	36	5	4 +0.2	4
MM-CF202 to 702	35 +0.010	79	75	10.036	55	5	5 +0.2	5

PM sensorless vector control, PM parameter initial setting

Pr.	GROUP	Name	Pr.	GROUP	Name
998	E430	PM parameter initialization	IPM		IPM initialization

Performing the IPM parameter initialization makes the IPM motor MM-CF ready for PM sensorless vector control. (This function is not available in the FR-A842-P.)

PM sensorless vector control requires the following conditions.

- The motor capacity is equal to or one rank lower than the inverter capacity.
- Single-motor operation (one motor to one inverter) is preformed.
- The overall wiring length with the motor is 100 m or shorter. (Even with the IPM motor MM-CF, when the wiring length exceeds 30 m, perform offline auto tuning.)

Setting procedure of PM sensorless vector control

Selecting the PM sensorless vector control by the IPM initialization mode

This inverter is set for an induction motor in the initial setting. Follow the following procedure to change the setting for the PM sensorless vector control.

60	
$\Gamma \gamma \lambda$	DOINT)
(- M	FUINT

- The parameters required to drive an MM-CF IPM motor are automatically changed as a batch.
- To change to the PM sensorless vector control, perform the following steps before setting other parameters. If the PM sensorless vector control is selected after setting other parameters, some of those parameters will be initialized too. (Refer to "IPM parameter initialization list" for the parameters that are initialized.)

	Operation
1.	Turning ON the power of the inverter
••	The operation panel is in the monitor mode.
	Changing the operation mode
2.	Press PU to choose the PU operation mode. [PU] indicator is lit.
	Selecting the parameter setting mode
3.	Press MODE to choose the parameter setting mode. [PRM] indicator is lit.
	IPM parameter initialization
4.	Turn 🚱 until ¦ 🏳 l''(IPM parameter initialization) appears.
	Displaying the set value
5.	Press set to read the present set value. " $[]$ " (initial value) appears.
	Changing the setting value
6.	Turn 💮 to change the set value to " – [[] –] ", then press SET].
	"]]] 3 and " PM" are displayed alternately. The setting is completed.

Setting value	Description				
0	Parameter settings for an induction motor				
3003 Parameter settings for an IPM motor MM-CF (rotations per minute)					

NOTE :

- Performing IPM parameter initialization in the parameter setting mode automatically changes the Pr.998PM parameter initialization setting.
 In the initial parameter setting, the capacity same as the inverter capacity is set in Pr.80 Motor capacity. To use a motor capacity that is one
 - rank lower than the inverter capacity, set Motor capacity by selecting the mode on the operation panel.
 - To set a speed or to display monitored items in frequency, set Pr.998. (Refer to Instruction Manual (Detailed).)

Selecting the PM sensorless vector control by Pr.998

• Setting Pr.998 PM parameter initialization as shown in the following table activates PM sensorless vector control.

Pr.998 setting	Description	Operation on IPM parameter initialization
0 (initial value)	Parameter settings for an induction motor (frequency)	$I \longrightarrow I'(IPM) \rightarrow \text{write "0"}$
3003	Parameter settings for an IPM motor MM-CF (rotations per minute)	$I = M(IPM) \rightarrow write "3003"$
3103	Parameter settings for an IPM motor MM-CF (frequency)	-
8009	Parameter (rotations per minute) settings for an IPM motor other than MM-CF (after tuning)	-
8109	Parameter (frequency) settings for an IPM motor other than MM-CF (frequency)	-
9009	Parameter (rotations per minute) settings for an SPM motor (after tuning)	-
9109	Parameter (frequency) settings for an SPM motor (after tuning)	-

NOTE

• The S-PM geared motor cannot be driven.

PM parameter initialization list

The parameter settings in the following table are changed to the settings required to perform PM sensorless vector control by selecting PM sensorless vector control with the IPM parameter initialization mode on the operation panel or with Pr.998 PM parameter initialization. · Performing parameter clear or all parameter clear sets back the parameter settings to the settings required to drive an induction motor.

P.						Settina				
Pr. Name			ction otor	PM motor (rotat	ions per minute)	PM motor ((frequency)	Setting in	crements	
Pr.	Name	Pr.998) value) CA	3003 (MM-CF)	8009 9009 (other than MM- CF)	3103 (MM-CF)	8109 9109 (other than MM- CF)	3003, 8009, 9009	0, 3103, 8109, 9109
1	Maximum frequency		120 Hz 60 Hz*	*1	3000 r/min	Maximum motor rotations per minute*8	200 Hz	Maximum motor frequency∗8	1 r/min	0.01 Hz
4	Multi-speed setting (hig	ah speed)	60 Hz	50 Hz	2000 r/min	Pr.84	133.33 Hz	Pr.84	1 r/min	0.01 Hz
	Electronic thermal O/L relay		Inverte current	r rated	Rated motor current (Refer to page 239 .)	-	Rated motor current (Refer to page 239 .)	-	0.01 A*1 0.1 A*2	
13	Starting frequency		0.5 Hz		8 r/min*5	Pr.84 × 10%	0.5 Hz*6	Pr.84 × 10%	1 r/min	0.01 Hz
15	Jog frequency		5 Hz		200 r/min	Pr.84 × 10%	13.33 Hz	Pr.84 × 10%	1 r/min	0.01 Hz
10	High speed maximum frequency		120 Hz 60 Hz*		3000 r/min	-	200 Hz	-	1 r/min	0.01 Hz
20	Acceleration/deceler reference frequency		60 Hz	50 Hz	2000 r/min	Pr.84	133.33 Hz	Pr.84	1 r/min	0.01 Hz
	Stall prevention opera	ation level	150%*´	7	150%*7				0.1%	
	Speed display Frequency monitoring	reference	v	50 Hz	0 2000 r/min	Pr.84	133.33 Hz	Pr.84	1 1 r/min	0.01 Hz
	Current monitoring		Inverte current	r rated	Rated motor current (Refer to page 239.)	Pr.859	Rated motor current (Refer to page 239.)	Pr.859	0.01 A*1 0.1 A*2	0.01112
71	Applied motor		0		330 *3	-	330 *3	-	1	
80	Motor capacity		9999		Motor capacity (MM-CF)*4	-	Motor capacity (MM-CF)*4	-	0.01 kW*1 0.1 kW*2	
81	Number of motor po	les	9999		8*4	-	8*4	-	1	
84	Rated motor frequer	ю	9999		2000 r/min	-	133.33 Hz	-	1 r/min	0.01 Hz
	Third output frequency		60 Hz	50 Hz	2000 r/min	Pr.84	133.33 Hz	Pr.84	1 r/min	0.01 Hz
(903)	Terminal 2 frequency gain frequency	, o	60 Hz	50 Hz	2000 r/min	Pr.84	133.33 Hz	Pr.84	1 r/min	0.01 Hz
(905)	Terminal 4 frequency	J. J	60 Hz	50 Hz	2000 r/min	Pr.84	133.33 Hz	Pr.84	1 r/min	0.01 Hz
	Speed setting switch		4		108	Pr.81 + 100	8	Pr.81	1	
	Soft-PWM operation		1 60 Hz	50 Hz	0 2000 r/min	D= 0.4	133.33 Hz	D= 04	1	0.01 Hz
	Subtraction starting	, ,	60 HZ	50 HZ	2000 1/1111	Pr.84	100.00 HZ	Pr.84	1 r/min	0.01 HZ
	time switchover freq		60 Hz	50 Hz	2000 r/min	Pr.84 Maximum motor	133.33 Hz	Pr.84 Maximum motor	1 r/min	0.01 Hz
374	Overspeed detection	n level	9999		3150 r/min	rotations per minute + 10 Hz*8*9	210 Hz	frequency + 10 Hz*8	1 r/min	0.01 Hz
	Frequency for maximum i		60 Hz	50 Hz	2000 r/min	Pr.84	133.33 Hz	Pr.84	1 r/min	0.01 Hz
	Speed setting refere		60 Hz	50 Hz	133.33 Hz	Pr.84	133.33 Hz	Pr.84	0.01 Hz	
557	Current average valu monitor signal outpu reference current	ue t	Inverte current		Rated motor current (Refer to page 239 .)	Pr.859	Rated motor current (Refer to page 239 .)	Pr.859	0.01 A*1 0.1 A*2	
820	Speed control P gair	า 1	60%		30%				1%	
	Speed control integr		0.333 s	6	0.333 s				0.001 s	
024	Torque control P gain 1 (current loop proportional gain)100%			100%				1%		
025	Torque control integral time 1 (current loop integral time)5 ms			20 ms	0.5.4	0.5.4		0.1 ms		
	Speed detection hys		0 Hz		8 r/min	0.5 Hz*9	0.5 Hz	1	1 r/min	0.01 Hz
885	compensation frequency limit value		6 Hz		200 r/min	Pr.84 × 10%	13.33 Hz	Pr.84 × 10%	1 r/min	0.01 Hz
093	Energy saving monit reference (motor cap	bacity)	Inverte current		Motor capacity (Pr	80)	Γ	Γ	0.01 kW*1 0.1 kW*2	
	Terminal 1 gain frequ (speed)	lency	60 Hz		2000 r/min	Pr.84	133.33 Hz	Pr.84	1 r/min	0.01 Hz
1121	Per-unit speed contr	ol	120 Hz 60 Hz*		3000 r/min	Maximum motor rotations per minute*8	200 Hz	Maximum motor frequency*8	1 r/min	0.01 Hz

*1 *2 *3 *4 *5 *6 *7 *8

Initial value for the FR-A820-03160(55K) or lower and FR-A840-01800(55K) or lower Initial value for the FR-A820-03800(75K) or higher and FR-A840-02160(75K) or higher Setting **Pr.71 Applied motor** = "333, 334, 8093, 8094, 9093, or 9094" does not change the **Pr.71 Applied motor** setting. When a value other than "9990" is set, the set value is not changed. 200 r/min when **Pr.788 Low speed range torque characteristic selection** = "0" **13.33 Hz when Pr.788 Low speed range torque characteristic selection** = "0" **10%** for SLD, 120% for ND, and 200% for HD (Refer to **Pr.570 Multiple rating setting on page 162**.) **Pr.702 Maximum motor frequency** is used as the maximum motor frequency (rotations per minute). When **Pr.702** = "9999 (initial value)", **Pr.84 Rated motor frequency** is used as the maximum motor frequency (rotations per minute). The setting value is converted from frequency to rotations per minute. (The value after the conversion differs according to the number of motor poles.) *9

• If IPM parameter initialization is performed in rotations per minute (Pr.998 = "3003, 8009, or 9009"), the parameters not listed in the table and the monitored items are also set and displayed in rotations per minute.

Specification comparison between PM sensorless vector control and induction motor control

Item		PM sensorless vector control (MM-CF)	Induction motor control		
Applicable motor		eries (0.5 to 7.0 kW) (Refer to page 239 .) an MM-CF (tuning required) *ı	Induction motor *!		
	High frequency superposition control	200% (200% for the 1.5 kW or lower with MM-CF, 150% for the 2.0 kW or higher)	200% (FR-A820-00046(0.4K) to FR-A820- 00250(3.7K), FR-A840-00023(0.4K) to FR-A840- 00126(3.7K))		
Starting torque	Current synchronization operation	50%	150% (FR-A820-00340(5.5K), FR-A840- 00170(5.5K) or higher) under Real sensorless vector control and vector control		
Zero speed	High frequency superposition control	Available (Select the HD rating for zero speed 200%)	Available under Real sensorless vector control		
	Current synchronization operation	Not available	and vector control		
Consist for success	High frequency superposition control	6 kHz (Pr.72 = "0 to 9"), 10 kHz (Pr.72 = "10 to 13"), 14 kHz (Pr.72 = "14 or 15") (6 kHz in a low-speed range of 10 kHz or higher. The frequency of 2 kHz is not selectable.)	FR-A820-03160(55K) or lower, FR-A840-01800(55K) or lower : Any value in the range of 0.75 kHz to 14.5 kHz FR-A820-03800(75K) or higher, FR-A840-02160(75K) or higher : 0.75 kHz to 6 kHz		
Carrier frequency	Current synchronization operation	2 kHz (Pr.72 = "0 to 5"), 6 kHz (Pr.72 = "6 to 9"), 10 kHz (Pr.72 = "10 to 13"), 14 kHz (Pr.72 = "14 or 15") (6 kHz in a low-speed range of 10 kHz or higher.)			
Automatic restart after instantaneous power failure	No startup waiting tin Using the regeneration recommended.	me. ion avoidance function or retry function together is	Startup waiting time exists.		
Startup delay	Startup delay of abo	ut 0.1 s for magnetic pole position detection.	No startup delay (when online auto tuning is not performed at startup).		
Driving by the commercial power supply	Cannot be driven by	the commercial power supply.	Can be driven by the commercial power supply. (Other than vector control dedicated motor.)		
Operation during coasting	While the motor is co	pasting, potential is generated across motor terminals.	While the motor is coasting, potential is not generated across motor terminals.		
Torque control	Not available		Available under Real sensorless vector control and vector control		
Position control	High frequency superposition control	Available (sensorless)	Available under vector control.		
	Current synchronization operation	Not available			

*1 The motor capacity is equal to or one rank lower than the inverter capacity. (It must be 0.4 kW or higher.) Using a motor with the rated current substantially lower than the inverter rated current will cause torque ripples, etc. and degrade the speed and torque accuracies. As a reference, select the motor with the rated motor current that is about 40% or higher of the inverter rated current.

• NOTE

- Before wiring, make sure that the motor is stopped. Otherwise an electric shock may occur.
 Never connect an IPM motor to the commercial power supply.
- · No slippage occurs with an IPM motor because of its characteristic. If an IPM motor, which took over an induction motor, is driven at the same speed as for the induction motor, the running speed of the IPM motor becomes faster by the amount of the induction motor's slippage. Adjust the speed command to run the IPM motor at the same speed as the induction motor, as required.

Countermeasures against deterioration of the 400 V class motor insulation

When driving a 400 V class motor by the inverter, surge voltages attributable to the wiring constants may occur at the motor terminals, deteriorating the insulation of the motor. When the 400 V class motor is driven by the inverter, consider the following countermeasures:

• With induction motor

It is recommended to take one of the following countermeasures:

Rectifying the motor insulation and limiting the PWM carrier frequency according to the wiring length

For the 400 V class motor, use an insulation-enhanced motor.

The Mitsubishi Electric high-efficiency motor SF-HR, the Mitsubishi Electric constant-torque motor SF-HRCA, and the Mitsubishi Electric highperformance energy-saving motor SF-PR are insulation-enhanced motors as standard. Specifically,

• Order a "400 V class inverter-driven insulation-enhanced motor".

- For the dedicated motor such as the constant-torque motor and low-vibration motor, use an "inverter-driven dedicated motor".
- Set Pr.72 PWM frequency selection as indicated below according to the wiring length.

Inverter	Wiring length 50 m or shorter	Wiring length 50 m to 100 m	Wiring length Longer than 100 m	
Standard model	15 (14.5 kHz) or lower	0 (0 kHz) or lower	4 (4 kHz) lower 4 (4 kHz) lower	
IP55 compatible model	15 (14.5 KHZ) 01 10WEI	9 (9 KHZ) OF IOWER		
Separated converter type	6 (6 kHz) or lower	6 (6 kHz) or lower		

• Suppressing the surge voltage on the inverter side

- For FR-A840-01800(55K) or lower, connect a surge voltage suppression filter (FR-ASF-H/FR-BMF-H) at the output side of the inverter.
- For FR-A840-02160(75K) or higher, connect a sine wave filter (MT-BSL/BSC) at the output side of the inverter.

With PM motor

Set Pr.72 PWM frequency selection as indicated below according to the wiring length.

Applicable Inverter	Wiring length				
Applicable inverter	50 m or shorter	50 m to 100 m			
FR-A840-00023(0.4K), 00038(0.75K)	0 (2 kHz) to 15 (14 kHz)	5 (2 kHz) or lower			
Others	0 (2 kHz) to 15 (14 kHz)	9 (6 kHz) or lower			

• NOTE

• A surge voltage suppression filter (FR-ASF-H/FR-BMF-H) can be used under V/F control and Advanced magnetic flux vector control. A sine wave filter (MT-BSL/BSC) can be used under V/F control. Do not use the filters under unspecified controls.

Application to special motors

Motors with brake

Use the motor with brake having independent power supply for the brake, connect the brake power supply to the inverter primary side power and make the inverter output off using the output stop terminal (MRS) when the brake is applied (motor stop). Rattle may be heard according to the type of the brake in the low speed region but it is not a fault.

Pole changing motor

As this motor differs in rated current from the standard motor, confirm the maximum current of the motor and select the inverter. Be sure to change the number of poles after the motor has stopped. If the number of poles is changed during rotation, the regenerative overvoltage protection circuit may be activated to cause an inverter alarm, coasting the motor to a stop.

Submersible motor

Since the motor rated current is larger than that of the standard motor, make selection of the inverter capacity carefully. In addition, the wiring distance between the motor and inverter may become longer, refer to **page 215** to perform wiring with a cable thick enough. Leakage current may flow more than the land motor, take care when selecting the earth leakage current breaker.

Explosion-proof motor

To drive an explosion-proof type motor, an explosion-proof test of the motor and inverter together is necessary. The test is also necessary when driving an existing explosion-proof motor. The inverter is a non-explosion proof structure, install it in a safety location.

• Geared motor

The continuous operating rotation range of this motor changes depending on the lubrication system and maker. Especially in the case of oil lubrication, continuous operation in the low-speed range only can cause gear seizure. For fast operation at higher than 60 Hz, please consult the motor maker.

Synchronous motor other than PM motor

This motor is not suitable for applications of large load variation or impact, where out-of-sync is likely to occur. Please contact your sales representative when using this motor because its starting current and rated current are greater than those of the standard motor and will not rotate stably at low speed.

Single phase motor

The single phase motor is not suitable for variable operation by the inverter.

For the capacitor starting system, the capacitor may be damaged due to harmonic current flowing to the capacitor. For the split-phase starting system and repulsion starting system, not only output torque is not generated at low speed but it will result in starting coil burnout due to failure of centrifugal force switch inside. Replace with a threephase motor for use.

• Major differences from the FR-A700 series

	Item	FR-A700	FR-A800	
Control method		V/F control Advanced magnetic flux vector control Real sensorless vector control Vector control (with plug-in option) PM sensorless vector control (IPM motor)	V/F control Advanced magnetic flux vector control Real sensorless vector control Vector control (with plug-in option/control terminal option) PM sensorless vector control (IPM motor/SPM motor)	
Added functions		_	USB host function Safety stop function PLC function etc.	
(b	Brake transistor rake resistor usable)	Built in for the FR-A720-0.4K to 22K Built in for the FR-A740-0.4K to 22K	Built in for the FR-A820-00046(0.4K) to 01250(22K) Built in for the FR-A840-00023(0.4K) to 01800(55K)	
	V/F control	400 Hz	590 Hz	
Maximum output frequency	Advanced magnetic flux vector control	120 Hz	400 Hz	
aximu t freq	Real sensorless vector control	120 Hz	400 Hz	
tpu	vector control	120 Hz	400 Hz	
no	PM sensorless vector control	300 Hz	400 Hz	
PID control		Turn the X14 signal ON to enable PID control.	When the X14 signal is not assigned, just set a value other than "0" in Pr.128 to enable PID control. When the X14 signal is assigned, turn the X14 signal ON while Pr.128 \neq "0" to enable PID control. The PID pre-charge function and dancer control are added.	
Automatic restart after instantaneous power failure		Turn the CS signal ON to enable restart.	CS signal assignment not required. (Restart is enabled with the Pr.57 setting only.)	
Number of motor poles V/F control switching		The V/F switching signal (X18) is valid when Pr.81 = "12 to 20 (2 to 10 poles)".	Pr.81 = "12 (12 poles)" X18 is valid regardless of the Pr.81 setting. (The Pr.81 settings "14 to 20" are not available.)	
F	PTC thermistor input	Input from terminal AU (The function of terminal AU is switched by a switch.)	Input from terminal 2. (The function of terminal 2 is switched by the $\ensuremath{\text{Pr.561}}$ setting.)	
	USB connector	B connector	Mini B connector	
Control circuit terminal block		Removable terminal block (screw type)	Removable terminal block (spring clamp type)	
Terminal response level		The FR-A800's I/O terminals have better response level than the FR-A700's terminals. By setting Pr.289 Inverter output terminal filter and Pr.699 Input terminal filter , the terminal response level can be compatible with that of FR-A700. Set to approximately 5 to 8 ms and adjust the setting according to the system.		
PU		FR-DU07 (4-digit LED) FR-PU07	FR-DU08 (5-digit LED) FR-LU08 (LCD operation panel) FR-PU07 (Some functions are limited or not available.) FR-DU07 is not supported.	
Plug-in option		Dedicated plug-in options (not interchangeable)		
Communication option		Connected to the connector 3	Connected to the connector 1	
Installation size		For standard models, installation size is compatible for all capacities. (Replacement between the same capacities does not require new mounting holes.) For separated converter types, installation size is not compatible. (New mounting holes are required.)		
Converter		Built-in for all capacities	An optional converter unit (FR-CC2) is required for separated converter types.	
DC reactor		The 75K or higher comes with a DC reactor (FR- HEL).	For the FR-A820-03800(75K) or higher, the FR-A840-02160(75K) or higher, and when a 75 kW or higher motor is used, select a DC reactor suitable for the applicable motor capacity. (A DC reactor is not included.) Separated converter types (converter unit FR-CC2) and IP55 compatible models have a built-in DC reactor.	
Brak	e unit (75 kW or higher)	FR-BU2, MT-BU5	FR-BU2	
			I	

Installation precautions

• Removal procedure of the front cover is different. (Refer to the Instruction Manual.)

· Plug-in options of the FR-A700 series are not compatible.

• Operation panel (FR-DU07) cannot be used.

Wiring precautions

• The spring clamp type terminal block has changed to the screw type. Use of blade terminals is recommended.

Instructions for continuous use of the FR-PU07 (parameter unit) manufactured in September 2015 or earlier

- For the FR-A800 series, many functions (parameters) have been added. When setting these parameters, the parameter names and setting ranges are not displayed.
- Only the parameter with the numbers up to "999" can be read and set. The parameters with the numbers after "999" cannot be read or set.
- Many protective functions have been added for the FR-A800 series. These functions are available, but all faults are displayed as "Fault". When the fault history is checked, "ERR" appears. Added faults will not appear on the parameter unit. (However, MT1 to MT3 are displayed as MT.)
- Parameter copy/verification function are not available.

For information on the restrictions on the purchase of the FR-PU07, refer to the Instruction Manual of the FR-PU07.

Copying parameter settings

The FR-A700 series' parameter settings can be easily copied to the FR-A800 series by using the setup software (FR Configurator2). (Not supported by the setup software FR-SW3-SETUP or older.)

• Comparison with the FR-A700 series in functions

Parameter/function	Addition	Modification	Related parameter	Remarks
Maximum frequency		0	Pr.1 etc.	Max. 590 Hz (Max. 400 Hz under other than V/F control)
Free thermal (electronic thermal O/L relay)	0		Pr.600 to Pr.604, Pr.692 to Pr.696	Thermal characteristics can be freely set.
PTC thermistor		0	Pr.561	The protection level can be set by parameters.
Strengthened excitation deceleration	0		Pr.660 to Pr.662	Loss of the motor is increased to reduce regenerative power.
4 mA input check	0		Pr.573, Pr.777, Pr.778	Loss of 4 mA input is detected.
Input terminal filter	0		Pr.699	The terminal response can be adjusted.
Output terminal filter	0		Pr.289	The terminal response can be adjusted.
Remote output terminal (analog)	0		Pr.655 to Pr.659	Optional analog output
Parameter display by group	0		Pr.Md	The parameters are displayed in the conventional numerical order in the initial state.
Speed smoothing	0		Pr.653, Pr.654	Machine resonance is reduced.
Traverse function	0		Pr.592 to Pr.597	Only speed control is available under vector control.
USB host (USB memory connection)	0		Pr.1049	Parameter read/copy, data logging, execution of the ladder in the USB (PLC function), etc.
Second PID control	0		Pr.753 to Pr.758, Pr.1134, Pr.1135, Pr.1140, Pr.1141, Pr.1143 to Pr.1149	
PID pre-charge function	0		Pr.760 to Pr.769	
PID output suspension function	0		Pr.575 to Pr.577	
PLC function	0		Pr.414 to Pr.417, Pr.498, Pr.1150, Pr.1199	
Maintenance timer		0	Pr.503, Pr.504, Pr.686 to Pr.689	Up to three timers can be set.
Fault initiation	0		Pr.997	Faults can be initiated.
Multiple rating selection	0		Pr.570	The rating can be selected from SLD, LD, ND, or HD.
Fast-response operation selection	0		Pr.800	High response of the vector control, real sensorless vector control, and PM sensorless vector control
24 V external power supply input	0		_	Operation is unavailable. (Communication and parameter setting are available.)
Cooling fan operation selection		0	Pr.244	Waiting time at stop can be changed.
GOT automatic recognition	0		—	The GOT2000 series is supported.
Optimum excitation control mode	0		Pr.60	

• Major differences between the standard model (FR-A840) and the separated converter type (FR-A842)

Item	FR-A842	Remarks (FR-A840)
Pr.30 Regenerative function selection	Setting ranges "2, 10, 11, 102, 110, 111" Initial value "10"	Setting ranges "0 to 2, 10, 11, 20, 21, 100, 101, 110, 111, 120, 121" Initial value "0"
Pr.70 Special regenerative brake duty	Without the parameter	
Monitor function (Pr.52, Pr.54, Pr.158, Pr.774 to Pr.776, Pr.992, Pr.1027 to Pr.1034)	Regenerative brake duty Without (Unacceptable)	
Input terminal function selection (Pr.178 to Pr.189)	DC feeding operation permission (X70), DC feeding cancel (X71) Without (Unacceptable)	
Pr.187 MRS terminal function selection	Initial value "10" (X10)	Initial value "24" (MRS)
Output terminal function assignment selection (Pr.190 to Pr.196, Pr.313 to Pr.322)	Instantaneous power failure/undervoltage (IPF), Regenerative brake pre-alarm (RBP), DC current feeding (Y85), Main circuit capacitor life (Y87), Inrush current limit circuit life (Y89), Estimated residual-life of main circuit capacitor (Y248) Without (Unacceptable)	
Pr.192 IPF terminal function selection	Initial value "9999" (No function)	Initial value "2" (IPF)
Inrush current limit circuit life display, Main circuit capacitor life display (Pr.256, Pr.258, Pr.259, Pr.506)	Without the parameter	
Pr.599 X10 terminal input selection	Initial value "1"(NC contact specification)	Initial value "0" (NO contact specification)
Pr.872 Input phase loss protection selection	Without the parameter	
Warning, protective functions	Regenerative brake pre-alarm (RB), Instantaneous power failure (E.IPF), Undervoltage (E.UVT), Input phase loss (E.ILF), Brake transistor alarm detection (E.BE), Inrush current limit circuit fault (E.IOH) Not available	

15 Compatibility

• Major differences between the standard model (FR-A840) and the IP55 compatible model (FR-A846)

	Item	FR-A840	FR-A846	
Protective structure		Enclose type (IP20): FR-A840-00620(22K) or lower Open type (IP00): FR-A840-00770(30K) or higher		
DC reactor		Optional	Built-in	
Internal air circulation fan		Without With		
Protective function		_	Internal fan alarm (FN2), Abnormal internal temperature (E.IAH)	
Circuit board coating (conforming to IEC60721-3-3 3C2/3S2)		With / Without (Selectable)	With	
Environment	Surrounding air temperature	LD, ND, HD rating: -10°C to +50°C (non-freezing) SLD rating: -10°C to +40°C (non-freezing)	LD, ND rating: -10°C to +40°C (non-freezing)	
Environment	Surrounding air humidity	With circuit board coating: 95% RH or less (non-condensing) Without circuit board coating: 90% RH or less (non-condensing)	95% RH or less (non-condensing)	
Brake transistor (usable brake resistor)		Built-in for the FR-A820-00046(0.4K) to 01250(22K) Built-in for the FR-A840-00023(0.4K) to 01800(55K)	Without (Brake resistor is not applicable.)	
Multiple rating (Pr.570 Multiple rating setting)		SLD, LD, ND (initial setting), HD rating (Setting range: "0 to 3")	LD, ND (initial setting) rating (Setting range: "1 or 2")	
Pr.30 Regenerative function selection		Setting range: "0 to 2, 10, 11, 20, 21, 100, 101, 110, 111, 120, or 121"	Setting range: "0, 2, 10, 20, 100, 110, or 120"	
Pr.70 Special regenerative brake duty		Available	Not available	
Regenerative brake duty (Pr.52, Pr.54, Pr.158, Pr.774 to Pr.776, Pr.992, Pr.1027 to Pr.1034 setting "9")		Available (can be set)	Not available (cannot be set)	
Operation panel		FR-DU08: IP40 (except for the PU connector section)	FR-DU08-01: IP55 (except for the PU connector section)	

• Major differences between the FR-A800 (RS-485 communication model) and the FR-A800-E (Ethernet communication model)

ltem	FR-A800 (RS-485 communication model)	FR-A800-E (Ethernet communication model)
Standard equipment	RS-485 terminals	Ethernet connector
Communication	Mitsubishi inverter protocol MODBUS RTU protocol	MODBUS/TCP MELSOFT / FA product connection SLMP iQSS CC-Link IE Field Network Basic
Number of connectable plug-in options	3	2 (initial status)
Optional screw-type terminal block (FR-A8TR)	Can be used.	Cannot be used.

• Major differences between the standard inverter and the inverter with parallel operation function

The following functions of the FR-A800 standard inverter are changed in the FR-A842-P.

Function name	Description
FWD and REV keys on the operation panel	The FWD and REV keys on the operation panel of the slave are disabled.
Mitsubishi inverter protocol communication	Since RS-485 terminals are used for RS-485 communication between the master and slave inverters, communication using the Mitsubishi inverter protocol through the RS-485 terminals is not available.
MODBUS RTU protocol communication	The MODBUS RTU protocol communication is not available.
Safety stop function	The safety stop function is not supported.
High speed maximum frequency (Pr.18)	The upper limit of the output frequency is 120 Hz. Even if a value higher than 120 Hz is set as a high speed maximum frequency, the setting is fixed to 120 Hz.
Current monitoring reference (Pr.56)	The initial value of Pr.56 varies according to the setting in Pr.1001 Parallel operation selection as follows. • Inverter rated current × Number of the inverters × 0.8 when Pr.1001 = "200 or 300" • Inverter rated current × 0.8 when Pr.1001 = "1 or 2"
Optimum excitation control (Pr.60)	The Optimum excitation control mode (Pr.60 = " 9") is not available.
Reference current (Pr.61)	It is determined by the following formula: Inverter rated current × Number of the inverters × 0.8, when Pr.61 = "9999 (initial value)"
Applied motor (Pr.71 (Pr.450))	The electronic thermal relay characteristic when Pr.71 (Pr.450) = "8090, 8093, 8094, 9090, 9093, or 9094" is the same as that the standard motor.
Carrier frequency (Pr.72)	The carrier frequency is fixed at 2 kHz. It cannot be changed using parameters.
PU stop selection (Pr.75)	The setting for PU stop selection (Pr.75) in the slave inverter is invalid. (The setting of Pr.75 in the master inverter is applied to the slave inverter.) • When the STOP/RESET key on PU of the slave inverter is pressed while Pr.75 of the master inverter = "14 to 17 or 114 to 117", the motor decelerates to stop regardless of the inverter's operation mode and the warning "PS" (PU stop) indication appears on the slave inverter. The "PS" can be reset on the master inverter. • When Pr.75 of the master inverter = "0 to 3, 100 to 103", the motor does not stop by pressing the STOP/ RESET key on the PU of the slave inverter even if the inverters are in the PU operation mode.
Auto tuning setting/status (Pr.96)	Tuning is not available although "101" (offline tuning with motor rotation) is set in Pr.96 .
PID action selection (Pr.128 (Pr.753))	When Pr.128 (Pr.753) of the slave inverter ≠ "2000, 2001, 2010, or 2011", the PID action selection function of the slave inverter is invalid.
Bypass selection at a fault (Pr.138)	Setting "1" in Pr.138 of the master inverter enables automatic switchover to commercial power supply operation when a protective function (E.OHT or E.CPU) is activated in the slave inverter. Install a thermal relay to the master inverter to protect the motor from overheating.
Output current detection level (Pr.150), Zero current detection level (Pr.152)	The result of the following formula corresponds to "100" (100%) of Pr.150 (Output current detection level) and Pr.152 (Zero current detection level) in the master inverter: Inverter rated current × Number of the inverters × 0.8.
Fast-response current limit (Pr.156)	This function is not available.
Frequency setting / key lock operation selection (Pr.161)	Regardless of the Pr.161 setting of the slave inverter, the setting dial frequency setting mode and setting dial potentiometer mode are disabled on the slave inverter. (The function to lock the operation panel keys is available.)
Automatic restart after instantaneous power failure selection (Pr.162)	Even when a value other than "3 or 13" is set in Pr.162 , a frequency search (reduced impact restart) is performed.
Slip compensation (Pr.245 to Pr.247)	To use the slip compensation function, set the motor capacity in Pr.80 (Pr.453) of the master in advance.
Self power management selection (Pr.248)	When "2" is set in Pr.248 of the master inverter, the MC1 signal turns OFF when the circuit failure protective function or E.PA1/E.PA2 (Parallel operation slave 1 fault / Parallel operation slave 2 fault) is activated.
High-speed setting maximum current (Pr.271), Middle-speed setting minimum current (Pr.272)	During operation with the X19 signal ON, when the average current of the current averaging range becomes equal to or less than the result of the following formula 1: Inverter rated current × Number of the inverters × 0.8 × Pr.271 setting (%), the maximum frequency is automatically defined as the setting of Pr.4 Multi-speed setting (high speed) . During operation with the X19 signal ON, when the average current of the current averaging range becomes equal to or more than the result of the following formula 2: Inverter rated current × Number of the inverters × 0.8 × Pr.272 setting (%), the maximum frequency is automatically defined as the setting of Pr.5 Multi-speed setting (middle speed) . When the average current is more than the result of the formula 1 and less than the result of the formula 2, linear compensation is performed.
Stop mode selection at communication error (Pr.502), Operation frequency during communication error (Pr.779)	The settings of Pr.502 and Pr.779 does not affect communication between the inverters via the RS-485 terminals. (The setting affects only communication via the communication option.)
PU mode operation command source selection (Pr.551)	The command source is the PU connector when Pr.551 = "1" and the inverters are in the PU operation mode. When a USB memory device is connected to the USB connector, the command source is the USB connector.
Multiple rating setting (Pr.570)	The SLD and HD ratings are not supported. When "0 or 3" is set in Pr.570 , the ND rating is applied.
Control method selection (Pr.800 (Pr.451))	The PM sensorless vector control is not available. When Pr.800 (Pr.451) = "13, 14, 113, or 114", Real sensorless vector control is applied.
Fast-response operation (Pr.800 (Pr.451))	Even if the fast-response operation is selected in Pr.800 (Pr.451), the normal-response operation is applied.

Warranty

When using this product, make sure to understand the warranty described below.

1. Warranty period and coverage

We will repair any failure or defect (hereinafter referred to as "failure") in our FA equipment (hereinafter referred to as the "Product") arisen during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit are repaired or replaced.

[Term]

The term of warranty for Product is twelve months after your purchase or delivery of the Product to a place designated by you or eighteen months from the date of manufacture whichever comes first ("Warranty Period"). Warranty period for repaired Product cannot exceed beyond the original warranty period before any repair work.

[Limitations]

- (1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule. It can also be carried out by us or our service company upon your request and the actual cost will be charged.
 - However, it will not be charged if we are responsible for the cause of the failure.
- (2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed to the Product.
- (3) Even during the term of warranty, the repair cost will be charged on you in the following cases;
 - 1) a failure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware or software problem
 - 2) a failure caused by any alteration, etc. to the Product made on your side without our approval
 - a failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety device required by applicable laws and has any function or structure considered to be indispensable according to a common sense in the industry
 - 4) a failure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly maintained and replaced
 - 5) any replacement of consumable parts (condenser, cooling fan, etc.)
 - 6) a failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquake, lightning and natural disasters
 - 7) a failure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of the Product from our company
 - 8) any other failures which we are not responsible for or which you acknowledge we are not responsible for
- 2. Term of warranty after the stop of production
 - (1) We may accept the repair at charge for another seven (7) years after the production of the product is discontinued. The
 - announcement of the stop of production for each model can be seen in our Sales and Service, etc.
 - (2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.
- 3. Service in overseas

Our regional FA Center in overseas countries will accept the repair work of the Product; however, the terms and conditions of the repair work may differ depending on each FA Center. Please ask your local FA center for details.

- 4. Exclusion of loss in opportunity and secondary loss from warranty liability
 - Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:
 - (1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
 - (2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
 - (3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
 - (4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.
- 5. Change of Product specifications

Specifications listed in our catalogs, manuals or technical documents may be changed without notice.

- 6. Application and use of the Product
 - (1) For the use of our product, its applications should be those that may not result in a serious damage even if any failure or malfunction occurs in product, and a backup or fail-safe function should operate on an external system to product when any failure or malfunction occurs.
 - (2) Our product is designed and manufactured as a general purpose product for use at general industries.

Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of electric power companies, and also which require a special quality assurance system, including applications for railway companies and government or public offices are not recommended, and we assume no responsibility for any failure caused by these applications when used.

In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments, railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used. We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific application. Please contact us for consultation.

Mitsubishi Electric's global FA network delivers reliable technologies and security around the world.

Available services

Technical consultation (engineering) Our Japanese and/or local staff offer technical advice, and can also propose the best products and systems for a customer's specific application needs.

Showrooms

The latest automation technologies, including programmable controllers, HMIs, inverters, servo systems, and industrial automation machinery such as electrical-discharge machines, laser processing machines, CNCs, and industrial robots can be seen at Mitsubishi Electric showrooms.

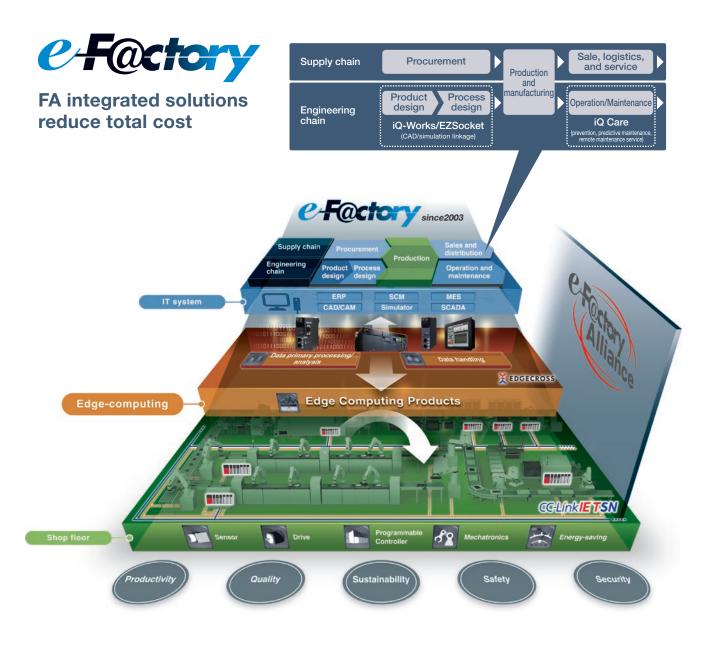
Training

From basic operations to applied programming, our training schools offer regular courses that use actual machines. We also offer customized training programs and onsite training sessions.

Technical support

Our FA centers and service shops work together to provide repairs, onsite engineering support, and spare parts.

Repairs


Handle repairs of our FA products.

Hand

This solution solves customers' issues and concerns by enabling visualization and analysis that lead to improvements and increase availability at production sites.

Utilizing our FA and IT technologies and collaborating with e-F@ctory Alliance partners, we reduce the total cost across the entire supply chain and engineeringchain, and support the improvement initiatives and one-step-ahead manufacturing of our customers.

Overall production information is captured in addition to energy information, enabling the realization of efficient production and energy use (energy savings).

Trademarks

DeviceNet is a trademark of the ODVA, PROFIBUS is a trademark of the PROFIBUS User Organization, and MODBUS is a registered trademark of SCHNEIDER ELECTRIC USA, INC.


Ethernet is a registered trademark of Fuji Xerox Corporation in Japan.

Windows and Windows Vista are registered trademarks of Microsoft Corporation in the United States and other countries. Other company and product names herein are the trademarks and registered trademarks of their respective owners.

A Safety Warning

To ensure proper use of the products listed in this catalog, please be sure to read the instruction manual prior to use.

YOUR SOLUTION PARTNER

Mitsubishi Electric offers a wide range of automation equipment from PLCs and HMIs to CNC and EDM machines.

A NAME TO TRUST

Since its beginnings in 1870, some 45 companies use the Mitsubishi name, covering a spectrum of finance, commerce and industry.

The Mitsubishi brand name is recognized around the world as a symbol of premium quality.

Mitsubishi Electric Corporation is active in space development, transportation, semi-conductors, energy systems, communications and information processing, audio visual equipment and home electronics, building and energy management and automation systems, and has 237 factories and laboratories worldwide in over 121 countries. This is why you can rely on Mitsubishi Electric automation solution - because we know first hand about the need for reliable, efficient, easy-to-use automation and control in our own factories.

As one of the world's leading companies with a global turnover of over 4 trillion Yen (over \$40 billion), employing over 100,000 people, Mitsubishi Electric has the resource and the commitment to deliver the ultimate in service and support as well as the best products.

Medium voltage: VCB, VCC

Power monitoring, energy management

Compact and Modular Controllers

Inverters, Servos and Motors

Visualisation: HMIs

Numerical Control (NC)

Processing machines: EDM, Lasers, IDS

Transformers, Air conditioning, Photovoltaic systems

Mitsubishi Electric Corporation Nagoya Works is a factory certified for ISO 14001 (standards for environmental management systems).

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN